18.在平面直角坐標系中,若點(-2,t)在直線x-2y+4=0的上方,則取值范圍是(1,+∞).

分析 由點(-2,t)在直線x-2y+4=0的上方,得-2-2t+4<0,由此能求出t的取值范圍.

解答 解:在平面直角坐標系中,
∵點(-2,t)在直線x-2y+4=0的上方,
∴必有-2-2t+4<0,
解得t>1,
∴t的取值范圍是(1,+∞).
故答案為:(1,+∞).

點評 本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意直線性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖幾何體由前向后方向的正投影面是平面EFGH,則該幾何體的主視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.定義在R上的函數(shù)g(x)及二次函數(shù)h(x)滿足:g(x)+2g(-x)=ex+$\frac{2}{e^x}$-9,h(-2)=h(0)=1,且h(-3)=-2.
(1)求g(x)和h(x)的解析式;
(2)對于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范圍;
(3)設(shè)f(x)=$\left\{\begin{array}{l}g(x),(x>0)\\ h(x),(x≤0)\end{array}$,在(2)的條件下,討論方程f[f(x)]=a+5的解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知點C為圓(x+1)2+y2=8的圓心,P是圓上的動點,點Q在圓的半徑CP上,且有點A(1,0)和AP上的點M,滿足$\overrightarrow{MQ}$•$\overrightarrow{AP}$=0,$\overrightarrow{AP}$=2$\overrightarrow{AM}$.
(1)當點P在圓上運動時,求點Q的軌跡方程;
(2)若直線y=kx+$\sqrt{{k}^{2}+1}$,(k>0)與(1)中所求點Q的軌跡交于不同的兩點F,H,O是坐標原點,且$\frac{2}{3}$≤$\overrightarrow{OF}$•$\overrightarrow{OH}$≤$\frac{3}{4}$時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1,a∈R.
(1)若曲線y=f(x)在點P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)是否存在實數(shù)a,使函數(shù)y=f(x)在x∈(0,e]上有最小值1?若存在,求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.拋物線C:y2=4x的交點為F,準線為l,p為拋物線C上一點,且P在第一象限,PM⊥l交C于點M,線段MF為拋物線C交于點N,若PF的斜率為$\frac{3}{4}$,則$\frac{|MN|}{|NF|}$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2+ax+2是R上的偶函數(shù),其中常數(shù)a∈R,則函數(shù)y=$\frac{f(x)}{x}$(x>0)的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓C經(jīng)過直線x+y-1=0與x2+y2=4的交點,且圓C的圓心為(-2,-2),則過點(2,4)向圓C作切線,所得切線方程為(  )
A.5x-12y+38=0B.5x+12y+38=0
C.5x-12y+38=0或x=2D.5x+12y+38=0或x=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{3}{2}{x^2}$+2x+3a+b恰有3個不同的零點,則f(0)的取值范圍是(-$\frac{5}{6}$,-$\frac{2}{3}$).

查看答案和解析>>

同步練習冊答案