7.圓C經(jīng)過(guò)直線x+y-1=0與x2+y2=4的交點(diǎn),且圓C的圓心為(-2,-2),則過(guò)點(diǎn)(2,4)向圓C作切線,所得切線方程為(  )
A.5x-12y+38=0B.5x+12y+38=0
C.5x-12y+38=0或x=2D.5x+12y+38=0或x=4

分析 聯(lián)立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得交點(diǎn),可得:圓C的標(biāo)準(zhǔn)方程為:(x+2)2+(y+2)2=16.過(guò)點(diǎn)(2,4)向圓C作切線,直線x=2時(shí)滿足條件.切線斜率存在時(shí),設(shè)切線方程為:y-4=k(x-2),即kx-y+4-2k=0,可得$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k即可得出.

解答 解:聯(lián)立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1+\sqrt{7}}{2}}\\{y=\frac{1-\sqrt{7}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{7}}{2}}\\{y=\frac{1+\sqrt{7}}{2}}\end{array}\right.$,
∴圓C的標(biāo)準(zhǔn)方程為:(x+2)2+(y+2)2=$(\frac{1+\sqrt{7}}{2}+2)^{2}$+$(\frac{1-\sqrt{7}}{2}+2)^{2}$=16.
過(guò)點(diǎn)(2,4)向圓C作切線,直線x=2時(shí)滿足條件.
切線斜率存在時(shí),設(shè)切線方程為:y-4=k(x-2),即kx-y+4-2k=0,
則$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{5}{12}$.可得切線方程為:5x-12y+38=0.
綜上可得:切線方程方程為:5x-12y+38=0或x=2.
故選:C.

點(diǎn)評(píng) 本題考查了直線與圓相交交點(diǎn)、直線與圓相切的性質(zhì)、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知{an}是正數(shù)組成的數(shù)列,a1=1,其前n項(xiàng)的和為Sn,且2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an(3an-3)cosnπ(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面直角坐標(biāo)系中,若點(diǎn)(-2,t)在直線x-2y+4=0的上方,則取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)${f_1}(x)=\frac{1}{2}{x^2},{f_2}(x)=alnx$(其中a>0).
(1)求函數(shù)f(x)=f1(x1)•f2(x2)的極值;
(2)若函數(shù)g(x)=f1(x1)-f2(x2)+(a-1)x在區(qū)間$(\frac{1}{e},e)$內(nèi)有兩個(gè)零點(diǎn),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.哈三中某興趣小組為了調(diào)查高中生的數(shù)學(xué)成績(jī)是否與物理成績(jī)有關(guān)系,在高二年級(jí)隨機(jī)調(diào)查了50名學(xué)生,調(diào)查結(jié)果表明:在數(shù)學(xué)成績(jī)較好的25人中有18人物理成績(jī)好,另外7人物理成績(jī)一般;在數(shù)學(xué)成績(jī)一般的25人中有6人物理成績(jī)好,另外19人物理成績(jī)一般.
(Ⅰ) 試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)思想,指出是否有99.9%把握認(rèn)為高中生的數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系.
數(shù)學(xué)成績(jī)好數(shù)學(xué)成績(jī)一般總計(jì)
物理成績(jī)好
物理成績(jī)一般
總計(jì)
(Ⅱ)  現(xiàn)將4名數(shù)學(xué)成績(jī)好且物理成績(jī)也好的學(xué)生分別編號(hào)為1,2,3,4,將4名數(shù)學(xué)成績(jī)好但物理成績(jī)一般的學(xué)生也分別編號(hào)1,2,3,4,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的2名學(xué)生編號(hào)之和不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.哈六中數(shù)學(xué)組推出微信訂閱號(hào)(公眾號(hào)hl15645101785)后,受到家長(zhǎng)和學(xué)生們的關(guān)注,為了更好的為學(xué)生和家長(zhǎng)提供幫助,我們?cè)谀硶r(shí)間段在線調(diào)查了60位更關(guān)注欄目1或欄目2(2選一)的群體身份樣本得到如下列聯(lián)表,已知在樣本中關(guān)注欄目1與關(guān)注欄目2的人數(shù)比為2:1,在關(guān)注欄目1中的家長(zhǎng)與學(xué)生人數(shù)比為5:3,在關(guān)注欄目2中的家長(zhǎng)與學(xué)生人數(shù)比為1:3
欄目1欄目2合計(jì)
家長(zhǎng)
學(xué)生
合計(jì)
(1)完成列聯(lián)表,并根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“更關(guān)注欄目1或欄目2與群體身份有關(guān)系”;
(2)如果把樣本頻率視為概率,隨機(jī)回訪兩位關(guān)注者,更關(guān)注欄目1的人數(shù)記為隨機(jī)變量X,求X的分布列和期望;
(3)由調(diào)查樣本對(duì)兩個(gè)欄目的關(guān)注度,請(qǐng)你為數(shù)學(xué)組教師提供建議應(yīng)該更側(cè)重充實(shí)哪個(gè)欄目的內(nèi)容,并簡(jiǎn)要說(shuō)明理由.
P(K2≥x00.100.050.0250.010.0050.001
x02.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ex
(1)過(guò)點(diǎn)(-1,0)作f(x)=ex的切線,求此切線的方程.
(2)若f(x)≥kx+b對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)k,b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.四棱錐P-ABCD的底面是邊長(zhǎng)為$2\sqrt{2}$的正方形,高為1,其外接球半徑為$2\sqrt{2}$,則正方形ABCD的中心與點(diǎn)P之間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}-\frac{a}{3},x≤0}\\{lnx-2x+a,x>0}\end{array}}$有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1+ln2,3]B.(ln2,3]C.(0,1+ln2)D.(0,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案