6.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{3}{2}{x^2}$+2x+3a+b恰有3個(gè)不同的零點(diǎn),則f(0)的取值范圍是(-$\frac{5}{6}$,-$\frac{2}{3}$).

分析 求函數(shù)的導(dǎo)數(shù),求出函數(shù)的極大值和極小值,利用函數(shù)f(x)恰有3個(gè)不同的零點(diǎn),轉(zhuǎn)化為f(x)極大>0且f(x)極小<0,求出a,b的關(guān)系即可得到結(jié)論.

解答 解:函數(shù)的導(dǎo)數(shù)為f′(x)=x2-3x+2=(x-1)(x-2),
由f′(x)>0得x>2或x<1,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)<0,得1<x<2,此時(shí)函數(shù)單調(diào)遞減,
即當(dāng)x=1時(shí),函數(shù)取得極大值,f(1)=$\frac{1}{3}-\frac{3}{2}$+2+3a+b=$\frac{5}{6}$+3a+b,
即當(dāng)x=2時(shí),函數(shù)取得極小值,f(2)=$\frac{8}{3}-$6+4+3a+b=$\frac{2}{3}$+3a+b,
若函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{3}{2}{x^2}$+2x+3a+b恰有3個(gè)不同的零點(diǎn),
則f(x)極大>0且f(x)極小<0,
即f(x)極大=$\frac{5}{6}$+3a+b>0且f(x)極小=$\frac{2}{3}$+3a+b<0,
則-$\frac{5}{6}$<3a+b<-$\frac{2}{3}$,
則f(0)=3a+b,
即f(0)的取值范圍是(-$\frac{5}{6}$,-$\frac{2}{3}$),
故答案為:(-$\frac{5}{6}$,-$\frac{2}{3}$)

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和函數(shù)的導(dǎo)數(shù)的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面直角坐標(biāo)系中,若點(diǎn)(-2,t)在直線x-2y+4=0的上方,則取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ex
(1)過(guò)點(diǎn)(-1,0)作f(x)=ex的切線,求此切線的方程.
(2)若f(x)≥kx+b對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)k,b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.四棱錐P-ABCD的底面是邊長(zhǎng)為$2\sqrt{2}$的正方形,高為1,其外接球半徑為$2\sqrt{2}$,則正方形ABCD的中心與點(diǎn)P之間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知拋物線C:x2=2py(p>0),過(guò)其焦點(diǎn)作斜率為1的直線l交拋物線C于M、N兩點(diǎn),且|MN|=16.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知?jiǎng)訄AP的圓心在拋物線C上,且過(guò)定點(diǎn)D(0,4),若動(dòng)圓P與x軸交于A、B兩點(diǎn),求$\frac{|DA|}{|DB|}$+$\frac{|DB|}{|DA|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且3f(x)=f′(x)-3,則4f(x)>f′(x)( 。
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,PA⊥平面ABCD.
(1)求PB與平面PCD所成角的正弦值;
(2)棱PD上是否存在一點(diǎn)E滿足∠AEC=90°?若存在,求AE的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}-\frac{a}{3},x≤0}\\{lnx-2x+a,x>0}\end{array}}$有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1+ln2,3]B.(ln2,3]C.(0,1+ln2)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.中國(guó)古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長(zhǎng)方形,長(zhǎng)30cm,寬26cm,其內(nèi)部窗芯(不含長(zhǎng)方形邊框)用一種條形木料做成,由兩個(gè)菱形和六根支條構(gòu)成,整個(gè)窗芯關(guān)于長(zhǎng)方形邊框的兩條對(duì)稱軸成軸對(duì)稱.設(shè)菱形的兩條對(duì)角線長(zhǎng)分別為xcm和ycm,窗芯所需條形木料的長(zhǎng)度之和為L(zhǎng).
(1)試用x,y表示L;
(2)如果要求六根支條的長(zhǎng)度均不小于2cm,每個(gè)菱形的面積為130cm2,那么做這樣一個(gè)窗芯至少需要多長(zhǎng)的條形木料(不計(jì)榫卯及其它損耗)?

查看答案和解析>>

同步練習(xí)冊(cè)答案