如圖是輸出4000以內(nèi)的能被3和5整除的所有正整數(shù)的算法流程圖,則在①處應填
 
考點:程序框圖
專題:圖表型,算法和程序框圖
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)語句找到能被15整除的正整數(shù),在n>4000時結束循環(huán)體,由此則不難給出答案.
解答: 解:a=15i;一個整數(shù)是3和5的倍數(shù),就是15的倍數(shù),所以a=15i,
又266×15<4000<267×15,
所以①處填a=15i.
故答案為:a=15i
點評:根據(jù)流程圖(或偽代碼)寫程序的運行結果或在判斷框填上符合條件的式子,是算法這一模塊常見的題型.其基本處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中分析出計算的類型,;②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型;③解模.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1<x<2},集合N={x|
3
2
<x<4},求M∪N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1,F(xiàn)2的坐標分別是(-3,0)、(3,0),動點M滿足△MF1F2的周長為16,
(1)求動點M的軌跡C的方程;
(2)若線段PQ是軌跡C上過點F2的弦,求△PQF1的內(nèi)切圓半徑最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)( A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則φ=(  )
A、
π
6
B、
π
3
C、-
π
6
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合{(x,y)|
2x+y-4≤0
x+y≥0
x-y≥0
}表示的平面區(qū)域為Ω,在區(qū)域Ω內(nèi)任取一點P(x,y),若點P的坐標滿足不等式y(tǒng)≤kx的概率為
2
3
,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖,輸出的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sinx,若將f(x)的圖象先沿x軸向左平移
π
6
個單位,再將所得圖象上所有點橫坐標不變,縱坐標伸長為原來的4倍,最后將所得圖象上所有點橫坐標縮短為原來的一半,縱坐標不變,得到函數(shù)g(x)的圖象.
(1)求函數(shù)g(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)設函數(shù)h(x)=g(x)-k(∈[-
π
2
,
π
2
])的零點個數(shù)為m,試求m關于k的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象連續(xù)不斷,若存在常數(shù)t(t∈R),使得f(x+t)+tf(x)=0對任意的實數(shù)x成立,則稱f(x)是回旋函數(shù),其回旋值為t,給出下列四個命題:
①函數(shù)f(x)=4為回旋函數(shù),其回旋值t=-1;
②若y=ax(a>0,且a≠1)為回旋函數(shù),則回旋值t>1;
③若f(x)=sinωx(ω≠0)為回旋函數(shù),則其最小正周期不大于2;
④對任意一個回旋值為t(t≥0)的回旋函數(shù)f(x),函數(shù)f(x)均有零點.
其中正確的命題是
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知三角形ABC中,角A、B、C的對邊分別為a,b,c,且A=2B,a=
3
2
b,則cosB等于
 

查看答案和解析>>

同步練習冊答案