【題目】在上的函數(shù)滿足:①(為正常數(shù));②當(dāng)時(shí),,若的圖象上所有極大值對(duì)應(yīng)的點(diǎn)均落在同一條直線上,則___.
【答案】1或2
【解析】
由已知可得分段函數(shù)f(x)的解析式,進(jìn)而求出三個(gè)函數(shù)的極值點(diǎn)坐標(biāo),根據(jù)三點(diǎn)共線,則
任取兩點(diǎn)確定的直線斜率相等,可以構(gòu)造關(guān)于c的方程,解方程可得答案.
∵當(dāng)2≤x≤4時(shí),f(x)=1﹣(x﹣3)2,
當(dāng)1≤x<2時(shí),2≤2x<4,
則f(x)f(2x)[1﹣(2x﹣3)2],
此時(shí)當(dāng)x時(shí),函數(shù)取極大值;
當(dāng)2≤x≤4時(shí),f(x)=1﹣(x﹣3)2,此時(shí)當(dāng)x=3時(shí),函數(shù)取極大值1,
當(dāng)4<x≤8時(shí),2x≤4
則f(x)=cf(x)=c[1﹣(x﹣3)2],
此時(shí)當(dāng)x=6時(shí),函數(shù)取極大值c,
∵函數(shù)的所有極大值點(diǎn)均落在同一條直線上,
即點(diǎn)(,),(3,1),(6,c)共線,
∴
解得c=1或2.
故答案為:1或2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京市政府為做好會(huì)議接待服務(wù)工作,對(duì)可能遭受污染的某海產(chǎn)品在進(jìn)入餐飲區(qū)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷(xiāo)售,否則不能銷(xiāo)售.已知該海產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.
(1)求該海產(chǎn)品不能銷(xiāo)售的概率.
(2)如果該海產(chǎn)品可以銷(xiāo)售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷(xiāo)售,則每件產(chǎn)品虧損80元(即獲利-80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列,并求出數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷(xiāo)售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷(xiāo)售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為”足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬(wàn)盧布 | 合計(jì) | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷(xiāo)售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類(lèi)型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義且為常數(shù)),若 , .下述四個(gè)命題:
① 不存在極值;
②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則 ;
③若在 上是減函數(shù),則實(shí)數(shù) 的取值范圍是 ;
④若 ,則在的圖象上存在兩點(diǎn),使得在這兩點(diǎn)處的切線互相垂直
A. ①③④B. ②③④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得, ,
,
(1).求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;
(2).判斷變量與之間的正相關(guān)還是負(fù)相關(guān);
(3).若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分不必要條件
C.若為假命題,則、均為假命題
D.命題:“,使得”,則非:“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】紀(jì)念幣是一個(gè)國(guó)家為紀(jì)念國(guó)際或本國(guó)的政治、歷史,文化等方面的重大事件、杰出人物、名勝古跡、珍稀動(dòng)植物、體育賽事等而發(fā)行的法定貨幣.我國(guó)在 1984 年首次發(fā)行紀(jì)念幣,目前已發(fā)行了 115 套紀(jì)念幣,這些紀(jì)念幣深受郵幣愛(ài)好者的喜愛(ài)與收,2019 年發(fā)行的第 115 套紀(jì)念幣“雙遺產(chǎn)之泰山幣”是目前為止發(fā)行的第一套異形幣,因?yàn)檫@套紀(jì)念幣的多種特質(zhì),更加受到愛(ài)好者追捧.某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)紀(jì)念幣的喜愛(ài)態(tài)度,隨機(jī)選了某城市某小區(qū)的 50 位居民調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
喜愛(ài) | 不喜愛(ài) | 合計(jì) | |
年齡不大于40歲 | 24 | ||
年齡大于40歲 | 40 | ||
合計(jì) | 22 | 50 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)判斷能否在犯錯(cuò)誤的概率不超過(guò) 1% 的前提下認(rèn)為不同年齡與紀(jì)念幣的喜愛(ài)無(wú)關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,a1=2,公比q>0,且a2,6,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,,求使的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)求的值;
(2)時(shí),求的取值范圍;
(3)函數(shù)的性質(zhì)通常指的是函數(shù)的定義域、值域、單調(diào)性、周期性、奇偶性等,請(qǐng)你探究函數(shù)其中的三個(gè)性質(zhì)(直接寫(xiě)出結(jié)論即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com