【題目】如圖所示,橢圓C:()的離心率為,左、右焦點分別為,,橢圓C過點,T為直線上的動點,過點T作橢圓C的切線,,A,B為切點.
(1)求證:A,,B三點共線;
(2)過點作一條直線與曲線C交于P,Q兩點.過P,Q作直線的垂線,垂足依次為M,N.求證:直線與交于定點.
【答案】(1)見解析;(2)見解析
【解析】
(1)先寫出切線,的方程,將代入即可得到直線的方程;
(2)當(dāng)PQ的斜率不存在時,易得直線與交于定點,當(dāng)PQ的斜率存在時,分別寫出直線,直線的方程,結(jié)合對稱性以及斜率不存在的特殊情況,可知定點一定在x軸上,結(jié)合韋達定理即可解決.
(1)由已知得,,又,解得,,所以橢圓C的方程為.
由于,設(shè),,,則切線,的方程分別為,,
由于切線,過點,所以,,
即,,所以直線的方程為.
已知直線過點,所以A,,B三點共線.
(2)當(dāng)軸時,易得,,,
直線PN的方程為,即,
直線MQ的方程為,即,
直線與交于定點.
當(dāng)不垂直于x軸時,設(shè)過點的直線為,聯(lián)立,
得.
則,
設(shè),,,則,,
過P,Q作直線的垂線,垂足依次為M,N,則,,
所以直線:,令,化為
.
所以直線:,令,化為.
因為,
所以,
直線與交于定點.
綜上,直線與交于定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標(biāo)準(zhǔn)為:首重(重量小于等于)收費元,續(xù)重元(不足按算). (如:一個包裹重量為則需支付首付元,續(xù)重元,一共元快遞費用)
(1)若你有三件禮物重量分別為,要將三個禮物分成兩個包裹寄出(如:合為一個包裹,一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)為了解該快遞點2019年的攬件情況,在2019年內(nèi)隨機抽查了天的日攬收包裹數(shù)(單位:件),得到如下表格:
包裹數(shù)(單位:件) | ||||
天數(shù)(天) |
現(xiàn)用這天的日攬收包裹數(shù)估計該快遞點2019年的日攬收包裏數(shù).若從2019年任取天,記這天中日攬收包裹數(shù)超過件的天數(shù)為隨機變量求的分布列和期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機構(gòu)從該省抽取了個城市,分別收集和分析了網(wǎng)約車的兩項指標(biāo)數(shù),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo)數(shù) | |||||
指標(biāo)數(shù) |
經(jīng)計算得:
(1)試求與間的相關(guān)系數(shù),并利用說明與是否具有較強的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為時,指標(biāo)數(shù)的估計值.
附:相關(guān)公式:,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.
(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線,.
(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;
(2)若曲線、交于、兩點,求兩交點間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是直線上的動點,過點的直線、與拋物線相切,切點分別是、.
(1)證明:直線過定點;
(2)以為直徑的圓過點,求點的坐標(biāo)及圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com