分析 化簡(jiǎn)可得Tn=$\frac{3(1-{3}^{n})}{1-3}$=$\frac{3({3}^{n}-1)}{2}$,從而可化得k≥$\frac{3n-6}{\frac{{3}^{n+1}}{2}}$=$\frac{2n-4}{{3}^{n}}$,從而判斷數(shù)列{$\frac{2n-4}{{3}^{n}}$}的單調(diào)性即可求數(shù)列的最大值,從而解得.
解答 解:∵${a_n}={3^n}$,
∴Tn=$\frac{3(1-{3}^{n})}{1-3}$=$\frac{3({3}^{n}-1)}{2}$,
∴Tn+$\frac{3}{2}$=$\frac{{3}^{n+1}}{2}$,
∵$({T_n}+\frac{3}{2})k≥3n-6$,
∴k≥$\frac{3n-6}{\frac{{3}^{n+1}}{2}}$=$\frac{2n-4}{{3}^{n}}$,
∵$\frac{2(n+1)-4}{{3}^{n+1}}$-$\frac{2n-4}{{3}^{n}}$=$\frac{10-4n}{{3}^{n+1}}$,
∴數(shù)列{$\frac{2n-4}{{3}^{n}}$}前3項(xiàng)單調(diào)遞增,從第3項(xiàng)起單調(diào)遞減,
∴當(dāng)n=3時(shí),數(shù)列{$\frac{2n-4}{{3}^{n}}$}有最大值$\frac{2}{27}$,
故$k≥\frac{2}{27}$.
故答案為:$k≥\frac{2}{27}$.
點(diǎn)評(píng) 本題考查了數(shù)列與不等式的綜合應(yīng)用,同時(shí)考查了恒成立問(wèn)題與最值問(wèn)題的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 196 | B. | 198 | C. | 200 | D. | 202 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4024 | B. | 4026 | C. | 4028 | D. | 4030 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 不能確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com