橢圓的左、右焦點(diǎn)分別為、,若橢圓上恰好有6個(gè)不同的點(diǎn),使得為等腰三角形,則橢圓的離心率的取值范圍是( )
A. B. C. D.
D
【解析】
試題分析:解:
①當(dāng)點(diǎn)P與短軸的頂點(diǎn)重合時(shí),△F1F2P構(gòu)成以F1F2為底邊的等腰三角形,此種情況有2個(gè)滿足條件的等腰△F1F2P;②當(dāng)△F1F2P構(gòu)成以F1F2為一腰的等腰三角形時(shí),以F2P作為等腰三角形的底邊為例,∵F1F2=F1P,∴點(diǎn)P在以F1為圓心,半徑為焦距2c的圓上,因此,當(dāng)以F1為圓心,半徑為2c的圓與橢圓C有2交點(diǎn)時(shí),存在2個(gè)滿足條件的等腰△F1F2P,此時(shí)a-c<2c,解得a<3c,所以離心率e>當(dāng)e=時(shí),△F1F2P是等邊三角形,與①中的三角形重復(fù),故e≠同理,當(dāng)F1P為等腰三角形的底邊時(shí),在e> 且e≠ 時(shí)也存在2個(gè)滿足條件的等腰△F1F2P,這樣,總共有6個(gè)不同的點(diǎn)P使得△F1F2P為等腰三角形,綜上所述,離心率的取值范圍是:e∈,故選D.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)
點(diǎn)評(píng):本題給出橢圓的焦點(diǎn)三角形中,共有6個(gè)不同點(diǎn)P使得△F1F2P為等腰三角形,求橢圓離心率e的取值范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
PA |
PB |
AB |
AP |
PB |
AB |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
PA |
PB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com