11.已知命題p:$\frac{6-x}{x+2}$<0,命題q:x2-4x+4-m2>0(m>0),若命題$\overline{q}$是命題$\overline{p}$的充分不必要條件,則實數(shù)m的范圍是(0,4).

分析 求出命題p,q的等價條件,利用¬p是¬q的充分不必要條件,即可求出m的取值范圍.

解答 解:由:$\frac{6-x}{x+2}$<0得(x+2)(x-6)>0,解得x>6或x<-2,
則¬p:-2≤x≤6,
∵q:x2-4x+4-m2>0,
∴¬q:x2-4x+4-m2≤0,
即[x-(2+m)][(x-(2-m)]≤0,
解得2-m≤x≤2+m
要使?p是?q的充分不必要條件,
∴$\left\{\begin{array}{l}{2-m>-2}\\{2+m<6}\end{array}\right.$,
則0<m<4
故答案為:(0,4).

點評 本題主要考查充分條件和必要條件的應(yīng)用,求出命題的等價條件是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.判斷函數(shù)f(x)=xln(x+$\sqrt{{x}^{2}+1}$)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖是某算法的程序框圖,若程序運行后輸出S的結(jié)果是765,則判斷框內(nèi)需填入的條件是n>5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1}{2}$,求:
(1)3cos2θ-sin2θ+1;
(2)$\frac{1-2co{s}^{2}\frac{θ}{2}+2sinθ}{2sin(θ+\frac{3π}{4})}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如果函數(shù)y=sin2x+acos2x的圖象關(guān)于點(-$\frac{π}{6}$,0)對稱,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,則n的值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知sinx=-0.427,求0°~360°范圍內(nèi)的角x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.sinα+cosα=$\frac{\sqrt{5}}{2}$,α∈(0,π),求
(1)cos2α
(2)tanα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.直線l過點P(4,1),且在x軸與y軸上的截距分別為a,b.
(1)若a>0,b>0,求ab取得最小值時的直線l的方程;
(2)若a>0,b>0,求a+b取得最小值時的直線l的方程;
(3)求點P到直線(2m-1)x+(m+3)y+(11-m)=0的最大距離.

查看答案和解析>>

同步練習冊答案