已知雙曲線C:
x2
a2
-
y2
b2
=1的點到焦點的最短距離為2,點P(3,4)在雙曲線C的漸近線上,則雙曲線C的方程為(  )
A、
x2
16
-
y2
9
=1
B、
x2
9
-
y2
16
=1
C、
x2
4
-
y2
3
=1
D、
x2
3
-
y2
4
=1
考點:雙曲線的標準方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線C:
x2
a2
-
y2
b2
=1的點到焦點的最短距離為2,點P(3,4)在雙曲線C的漸近線上,可得c-a=2,
b
a
=
4
3
,求出a,b,即可求出雙曲線C的方程.
解答: 解:由題意,c-a=2,
b
a
=
4
3
,
∴a=3,b=4,c=5
∴雙曲線C的方程為
x2
9
-
y2
16
=1
,
故選:B.
點評:本題考查雙曲線的方程,考查雙曲線的性質(zhì),求出a,b是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1+a2=16且Sn=n+4+2Sn-1
(1)求數(shù)列的通項公式an;
(2)若數(shù)列{bn}滿足bn=nan,其前n項和為Tn,證明:存在唯一的n≠1,使得Tn=22n-17成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x) 是k型函數(shù).給出下列說法:①f(x)=3-
4
x
不可能是k型函數(shù);
②若函數(shù)y=-
1
2
x2+x是3型函數(shù),則m=-4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為
4
9
;
④若函數(shù)y=
(a2+a)x-1
a2x
(a≠0)是1型函數(shù),則n-m的最大值為
2
3
3

下列選項正確的是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x>0,y>0,且x2+y2-xy=1,則x+2y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a=1時,求y=2x-
a
x
在(0,1]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減,且a=f(-1),b=f(log24),則實數(shù)a,b的大小關(guān)系時( 。
A、a<bB、a=b
C、a>bD、不能比較

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)兩正數(shù)x,y滿足約束條件
xy≤128
x
y3
1
2
x3
y
≥32
,則
x2
y
的最大值為(  )
A、1024B、256C、8D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一橢圓
x2
a2
+
y2
b2
=1
(a>b>0),焦距為2
10
,若一雙曲線與橢圓共焦點,且它的實軸比橢圓的長軸短8,雙曲線的離心率與橢圓的離心率之比為5:1,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=1,且an=an+1+2,則該數(shù)列的通項公式是( 。
A、2n-1B、2n+1
C、1-2nD、3-2n

查看答案和解析>>

同步練習冊答案