下列條件能推出平面平面的是(    )
A.存在一條直線
B.存在一條直線
C.存在兩條平行直線
D.存在兩條異面直線
D
解:因為根據(jù)面面平行的判定定理可知,如果存在兩條異面直線,則可以利用線線平行得到面面平行,選D
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,、分別是正三棱柱的棱的中點,且棱.

(Ⅰ)求證:平面;
(Ⅱ)在棱上是否存在一點,使二面角的大小為,若存在,求的長;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示,已知M、N分別是AC、AD的中點,BCCD.

(Ⅰ)求證:MN∥平面BCD;
(Ⅱ)求證:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直線AC與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知棱柱的底面是菱形,且面,,為棱的中點,為線段的中點,
(1)求證:

(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖5,正△的邊長為4,邊上的高,分別是邊的中點,現(xiàn)將△沿翻折成直二面角
(1)試判斷直線與平面的位置關(guān)系,并說明理由;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使?如果存在,求出的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正方體ABCD-A1B1C1D1中,下列結(jié)論正確的是( )
A.A1C1∥ADB.C1D1⊥AB
C.AC1與CD成45°角 D.A1C1與B1C成60°角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.

(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)求直線與平面所成角的正切值;
(Ⅲ)已知M在線段PC上,且BM=DM=,CM=3,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將邊長為2,一個內(nèi)角為的菱形沿較短對角線折成四面體,點
 分別為的中點,則下列命題中正確的是                   。
;②;③有最大值,無最小值;
④當四面體的體積最大時,; ⑤垂直于截面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱錐中,直線所成的角的大小為
A.B.C.D.

查看答案和解析>>

同步練習冊答案