A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{2\sqrt{13}}{13}$ | D. | -$\frac{2\sqrt{13}}{13}$ |
分析 由題意畫出圖形,求出橢圓的通徑,進(jìn)一步求出tan∠MOF=$\frac{3}{2}$,再利用萬能公式得答案.
解答 解:不妨設(shè)F為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn),
由a2=4,b2=3,得c2=a2-b2=1,
∴F(1,0),則M($c,\frac{^{2}}{a}$)=(1,$\frac{3}{2}$),N($c,-\frac{^{2}}{a}$)=(1,-$\frac{3}{2}$),
∴tan∠MOF=$\frac{3}{2}$,
∴cos∠MON=$\frac{1-ta{n}^{2}∠MOF}{1+ta{n}^{2}∠MOF}$=$\frac{1-(\frac{3}{2})^{2}}{1+(\frac{3}{2})^{2}}=-\frac{5}{13}$.
故選:B.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了橢圓通徑的求法,訓(xùn)練了三角函數(shù)中萬能公式的應(yīng)用,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 直角三角形 | C. | 銳角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{2}{e}$] | B. | (-∞,$\frac{2}{e}$) | C. | (-∞,0] | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{e}}{6}$,+∞) | B. | [$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$] | C. | [$\frac{1}{6}$,+∞) | D. | [$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com