【題目】已知函數(shù),.

1)求直線與曲線相切時(shí),切點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),恒成立,求的取值范圍.

【答案】1)(1,0)(2

【解析】

求出函數(shù)的導(dǎo)函數(shù),設(shè)所求切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義可得切線的斜率為,再由切點(diǎn)滿足函數(shù),從而得到關(guān)于的方程組,解方程即可;

當(dāng)時(shí),恒成立,等價(jià)于對(duì)恒成立.

構(gòu)造函數(shù),則,

分兩種情況利用導(dǎo)數(shù)討論函數(shù)單調(diào)性及最值即可.

因?yàn)楹瘮?shù),所以

設(shè)直線與曲線相切的切點(diǎn)的坐標(biāo)為,

,整理化簡(jiǎn)得.

,則,

上單調(diào)遞減,

∴由零點(diǎn)存在性定理可得,最多有一個(gè)實(shí)數(shù)根.

又∵,∴,此時(shí),

即切點(diǎn)的坐標(biāo)為(1,0.

2)當(dāng)時(shí),恒成立,等價(jià)于對(duì)恒成立.

,則,.

①當(dāng),時(shí),,

上單調(diào)遞增,因此符合題意.

②當(dāng)時(shí),令.

得,.

∴當(dāng)時(shí),,單調(diào)遞減,

∴當(dāng)時(shí),,不符合題意;

綜上所述得,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是坐標(biāo)原點(diǎn),過的直線分別交拋物線、兩點(diǎn),直線與過點(diǎn)平行于軸的直線相交于點(diǎn),過點(diǎn)與此拋物線相切的直線與直線相交于點(diǎn).則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何是美籍法國(guó)數(shù)學(xué)家芒德勃羅在20世紀(jì)70年代創(chuàng)立的一門數(shù)學(xué)新分支,其中的謝爾賓斯基圖形的作法是:先作一個(gè)正三角形,挖去一個(gè)中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的每個(gè)小正三角形中又挖去一個(gè)中心三角形”.按上述方法無(wú)限連續(xù)地作下去直到無(wú)窮,最終所得的極限圖形稱為謝爾賓斯基圖形(如圖所示),按上述操作7次后,謝爾賓斯基圖形中的小正三角形的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為拋物線的焦點(diǎn),過F的動(dòng)直線交拋物線CAB兩點(diǎn).當(dāng)直線與x軸垂直時(shí),.

1)求拋物線C的方程;

2)若直線AB與拋物線的準(zhǔn)線l相交于點(diǎn)M,在拋物線C上是否存在點(diǎn)P,使得直線PA,PMPB的斜率成等差數(shù)列?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),對(duì)任意,都有.

討論的單調(diào)性;

當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若數(shù)列滿足所有的項(xiàng)均由,1構(gòu)成且其中個(gè),1個(gè),則稱為“數(shù)列”.

1,為“數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?

2,為“數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得,且的概率為.

查看答案和解析>>

同步練習(xí)冊(cè)答案