7.已知數(shù)列{an}滿足an+1=an-2,且a2=1.
(1)求{an}的通項an和前n項和Sn;
(2)設(shè)${{c}_{n}}=\frac{5-{{a}_{n}}}{2}$,bn=${2}^{{c}_{n}}$,證明數(shù)列{bn}是等比數(shù)列.

分析 (1)數(shù)列{an}滿足an+1=an-2,且a2=1.可得數(shù)列{an}是等差數(shù)列,公差為-2,a1=3.利用通項公式及其求和公式即可得出.
(2)${{c}_{n}}=\frac{5-{{a}_{n}}}{2}$=n,bn=${2}^{{c}_{n}}$=2n,只要證明$\frac{_{n+1}}{_{n}}$=非0常數(shù)即可.

解答 (1)解:數(shù)列{an}滿足an+1=an-2,且a2=1.
∴數(shù)列{an}是等差數(shù)列,公差為-2,a1=3.
∴an=3+(n-1)×(-2)=-2n+5.
Sn=$\frac{n(3-2n+5)}{2}$=-n2+4n.
(2)證明:${{c}_{n}}=\frac{5-{{a}_{n}}}{2}$=n,bn=${2}^{{c}_{n}}$=2n,
$\frac{_{n+1}}{_{n}}$=$\frac{{2}^{n+1}}{{2}^{n}}$=2.
∴數(shù)列{bn}是等比數(shù)列.

點評 本題考查了等差數(shù)列與等比數(shù)列的定義通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若$θ∈[{\frac{5}{4}π,\frac{3}{2}π}]$,則$\sqrt{1-sin2θ}-\sqrt{1+sin2θ}$可化簡為2cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項和Sn滿足Sn+1=a2Sn+a1,其中a2≠0.
(Ⅰ)求證:{an}是首項為1的等比數(shù)列;
(Ⅱ)若數(shù)列{bn}的前n項和為Tn=n2+2n,求數(shù)列{an•bn}的前n項和;
(Ⅲ)若a2>-1,求證:Sn≤$\frac{n}{2}$(a1+an),并給出等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是( 。
A.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題
B.“x=-1”是“x2+3x+2=0”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若復(fù)數(shù)$\frac{2+ai}{1+i}$(a∈R)是純虛數(shù)(i是虛數(shù)單位),則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)f(x)=(m-1)x2+6mx+2是偶函數(shù),則f(x)的單調(diào)增區(qū)間為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且x∈[0,1]時,f(x)=2x+x-1.若方程f(x)=1在區(qū)間[-6,4]上有m個不同的根x1,x2,…,xm,則$\sum_{i=1}^{m}$xi=( 。
A.-6B.6C.0D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正數(shù)x,y滿足:2x+y=1,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=-$\frac{1}{x}$+ln$\frac{1+x}{1-x}$.
(1)求函數(shù)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案