12.語句p:曲線x2-2mx+y2-4y+2m+7=0表示圓;語句q:曲線$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.

分析 由p∨q為真命題,¬p為真命題,得p假q真,進而可得實數(shù)m的取值范圍.

解答 解:若p真,則曲線x2-2mx+y2-4y+2m+7=0化為(x-m)2+(y-2)2=m2-2m-3,
由已知m2-2m-3>0,解得m<-1或m>3.…(3分)
若q真,則m2>2m>0,解得m>2.…(6分)
由p∨q為真命題,?p為真命題,得p假q真.…(8分)
則$\left\{\begin{array}{l}-1≤m≤3\\ m>2\end{array}$解得2<m≤3,
所以實數(shù)m的取值范圍是2<m≤3.…(10分)

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復合命題,橢圓的標準方程,圓的一般方程等知識點,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.計算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-log327=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知全集N=Z,集合A={-1,1,2,3,4},B={-2,-1,0,1,2},則(∁UA)∩B=( 。
A.{3,4}B.{-2,3}C.{-2,4}D.{-2,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,在四棱錐A-BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點G,使得二面角D-BG-E的大小為$\frac{π}{3}$?若存在,求$\frac{AG}{AE}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知拋物線C:y2=2px(p>0)的焦點為F,以F為圓心且半徑為4的圓交C于M,N兩點,交C的準線l于A、B兩點,若A、F、N三點共線,則p=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知全集U=R,集合A={x|2x<1},B={x|x-2<0},則(∁UA)∩B=( 。
A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項和為Sn.若a1=2,S2=a3,則a2=4,S10=110.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$P(1,\frac{3}{2})$,離心率$e=\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),直線AB與直線l:x=4相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3,求證:k1,k3,k2成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的圖象如圖所示,則函數(shù)f(x)的解析式的值為( 。
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2sin(2x+\frac{π}{3})$C.$f(x)=2sin(x+\frac{π}{6})$D.$f(x)=2sin(x+\frac{π}{3})$

查看答案和解析>>

同步練習冊答案