甲、乙、丙三名學生各自隨機選擇到A、B兩個書店購書,甲、乙、丙三名學生在同一書店購書的概率
 
分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出該事件的概率.
解答:解:甲乙丙三名學生AB兩個書店購書的所有可能結果有:
精英家教網(wǎng)
從樹狀圖可以看出,這三名學生到同一書店購書的可能結果有AAA、BBB共2種,
所以甲乙丙到同一書店購書的概率p=
2
8
=
1
4

故填:
1
4
點評:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某大學一個專業(yè)團隊為某專業(yè)大學生研究了多款學習軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學年使用后,團隊調查了這個專業(yè)大一四個班的使用情況,從各班抽取的樣本人數(shù)如下表:
班級
人數(shù) 3 2 3 4
(1)從這12人中隨機抽取2人,求這2人恰好來自同一班級的概率;
(2)從這12名學生中,指定甲、乙、丙三人為代表,已知他們下午自習時間每人選擇一款軟件,其中選A、B兩個軟件學習的概率都是
1
6
,且他們選擇A、B、C任一款軟件都是相互獨立的.設這三名學生中下午自習時間選軟件C的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省珠海市高三9月摸底考試理科數(shù)學試卷(解析版) 題型:解答題

某大學一個專業(yè)團隊為某專業(yè)大學生研究了多款學習軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學年使用后,團隊調查了這個專業(yè)大一四個班的使用情況,從各班抽取的樣本人數(shù)如下表

班級

人數(shù)

3

2

3

4

(1)從這12人中隨機抽取2人,求這2人恰好來自同一班級的概率.

(2)從這12名學生中,指定甲、乙、丙三人為代表,已知他們下午自習時間每人選擇A、B兩個軟件學習的概率每個都是,且他們選擇A、B、C任一款軟件都是相互獨立的.設這三名學生中下午自習時間選軟件C的人數(shù)為,求的分布列和數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年新疆烏魯木齊高二上學期期中考試數(shù)學試卷 題型:解答題

現(xiàn)有7名同學去參加一個活動,分別求出以下不同要求的方法數(shù)(以下各小題寫出必要的計算公式,最終結果用數(shù)字作答)

(1)排隊時7名同學中的丙不站在中間的排法

(2) 排隊時7名同學中的甲、乙、丙三名同學各不相鄰的排法

(3)排隊時7名同學中的甲不能站在最前并且已不能站在最后的排法(理科學生做)

(4)7名學生選出3名代表發(fā)言,甲,乙,丙三名同學至多兩人個入選的選法(理科學生做)

     7名學生中選出3名代表發(fā)言,甲、乙只有一人入選的選法有多少?(文科學生做)

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某大學一個專業(yè)團隊為某專業(yè)大學生研究了多款學習軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學年使用后,團隊調查了這個專業(yè)大一四個班的使用情況,從各班抽取的樣本人數(shù)如下表:
班級
人數(shù) 3 2 3 4
(1)從這12人中隨機抽取2人,求這2人恰好來自同一班級的概率;
(2)從這12名學生中,指定甲、乙、丙三人為代表,已知他們下午自習時間每人選擇一款軟件,其中選A、B兩個軟件學習的概率都是
1
6
,且他們選擇A、B、C任一款軟件都是相互獨立的.設這三名學生中下午自習時間選軟件C的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省珠海市高三(上)開學摸底數(shù)學試卷(理科)(解析版) 題型:解答題

某大學一個專業(yè)團隊為某專業(yè)大學生研究了多款學習軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學年使用后,團隊調查了這個專業(yè)大一四個班的使用情況,從各班抽取的樣本人數(shù)如下表:
班級
人數(shù)3234
(1)從這12人中隨機抽取2人,求這2人恰好來自同一班級的概率;
(2)從這12名學生中,指定甲、乙、丙三人為代表,已知他們下午自習時間每人選擇一款軟件,其中選A、B兩個軟件學習的概率都是,且他們選擇A、B、C任一款軟件都是相互獨立的.設這三名學生中下午自習時間選軟件C的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案