【題目】已知C是以AB為直徑的圓周上一點,平面.
(1)求證:平面平面;
(2)若異面直線PB與AC所成的為,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由線面垂直的性質定理可知.再由以及線面垂直的判斷定理,可知平面,即可證明.
(2)解法1,建立空間直角坐標系,令,確定點坐標,令,由題意可知,即,再求平面的法向量為與平面的法向量為,求解即可.解法2:過作的平行線交圓于,連接,,所以直線與所成的角,即為與所成的角,,再過作交于,過作交于,連接,由三垂線定理知,所以即為二面角的平面角,求解邊長即可.
(1)證明:因為為圓的直徑,所以,
又平面,而平面,所以,
又,平面,平面
所以平面,
而平面,所以平面平面;
(2)解法1:建系如圖所示
令,而,則,.
則,令
所以,.
因為異面直線與所成的角為
故,解得.
令平面的一個法向量為
而
由,,所以
由,,所以,即
而平面的一個法向量為
所以.
所以二面角的余弦值為
解法2:過作的平行線交圓于,連接,
所以直線與所成的角,即為與所成的角.
因為為圓的直徑,所以
又平面,而平面,所以.
又,所以平面
而平面,所以,則.
令,且所以,
,
,
過作交于,過作交于,連接,由三垂線定理知.
所以即為二面角的平面角.
,
即 .
即為二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不等的實根,則
①試判斷函數(shù)在區(qū)間上是否具有單調性,并說明理由;
②若方程的兩實根為求使成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解本校文、理科學生的學業(yè)水平模擬測試數(shù)學成績情況,分別從理科班學生中隨機抽取人的成績得到樣本甲,從文科班學生中隨機抽取人的成績得到樣本乙,根據(jù)兩個樣本數(shù)據(jù)分別得到如下直方圖:
甲樣本數(shù)據(jù)直方圖
乙樣本數(shù)據(jù)直方圖
已知乙樣本中數(shù)據(jù)在的有個.
(1)求和乙樣本直方圖中的值;
(2)試估計該校理科班學生本次模擬測試數(shù)學成績的平均值和文科班學生本次模擬測試數(shù)學成績的中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),,曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.
(1)求之間的距離;
(2)對于函數(shù)和的公共定義域中的任意實數(shù),稱的值為函數(shù)和在處的偏差.求證:函數(shù)和在其公共定義域內的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市在爭創(chuàng)文明城市過程中,為調查市民對文明出行機動車禮讓行人的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于45歲 | 80 | ||
年齡大于45歲 | 10 | ||
合計 | 70 | 100 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡段與是否支持文明出行機動車禮讓行人有關?
(3)已知在被調查的年齡小于25歲的支持者有5人,其中2人是教師,現(xiàn)從這5人中隨機抽取3人,求至多抽到1位教師的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)新研發(fā)了一種產品,產品的成本由原料成本及非原料成本組成.每件產品的非原料成本(元)與生產該產品的數(shù)量(千件)有關,經統(tǒng)計得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù),繪制了散點圖.
觀察散點圖,兩個變量不具有線性相關關系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與的相關系數(shù).參考數(shù)據(jù)(其中):
(1)用反比例函數(shù)模型求關于的回歸方程;
(2)用相關系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產量為10千件時每件產品的非原料成本;
(3)該企業(yè)采取訂單生產模式(根據(jù)訂單數(shù)量進行生產,即產品全部售出).根據(jù)市場調研數(shù)據(jù),若該產品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產品的原料成本為10元,根據(jù)(2)的結果,企業(yè)要想獲得更高利潤,產品單價應選擇100元還是90元,請說明理由.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關系數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com