設α,β為兩個不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若m⊥n,m⊥α,n?α則n∥α;
②若α⊥β,則α∩β=m,n?α,n⊥m,則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若n?α,m?β,α與β相交且不垂直,則n與m不垂直.
其中,所有真命題的序號是________.
科目:高中數(shù)學 來源: 題型:填空題
如圖所示,在四棱錐PABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖,在長方形中,為的中點,為線段(端點除外)上一動點,現(xiàn)將沿折起,使平面平面.在平面內(nèi)過點作為垂足,設,則的取值范圍是________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
下面給出五個命題:
①已知平面//平面,是夾在間的線段,若//,則;
②是異面直線,是異面直線,則一定是異面直線;
③三棱錐的四個面可以都是直角三角形。
④平面//平面,,//,則;
⑤三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
其中正確的命題編號是 (寫出所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
在平面幾何里有射影定理:設△ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BD·BC.拓展到空間,在四面體A—BCD中,DA⊥面ABC,點O是A在面BCD內(nèi)的射影,且O在面BCD內(nèi),類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關(guān)系為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長為1,點M∈AB1,N∈BC1,且AM=BN≠,有以下四個結(jié)論:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1是異面直線.其中正確命題的序號是________.(注:把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖,正方體ABCDA1B1C1D1中,AB=2,點E為AD的中點,點F在CD上,若EF∥平面AB1C,則線段EF的長度等于________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com