【題目】已知頂點(diǎn)在單位圓上的 中,角 的對(duì)邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.
【答案】
(1)解:因?yàn)? ,
所以 ,
所以 .
因?yàn)? ,所以 ,
所以 .
因?yàn)? ,所以 .
所以 .
故答案為: .
(2)解:據(jù)(1)求解知 ,又 ,∴ ,
又據(jù)題設(shè)知 ,得 .
因?yàn)橛捎嘞叶ɡ,? ,
所以 .
所以
故答案為: S Δ A B C=
【解析】(1)先用正弦定理將邊角關(guān)系轉(zhuǎn)化為角的關(guān)系,再用兩角和的正弦公式得到關(guān)于角A的關(guān)系式,求cosA;
(2)先用條件求出a邊,再用余弦定理求bc,再求面積.
【考點(diǎn)精析】掌握兩角和與差的正弦公式是解答本題的根本,需要知道兩角和與差的正弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列 中, ,其前 項(xiàng)和為 ,等比數(shù)列 的各項(xiàng)均為正數(shù), ,公比為 ,且 , .
(Ⅰ)求 與 .
(Ⅱ)設(shè)數(shù)列 滿足 ,求 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體 中, ,直線 與直線 所成的角為 ,直線 與平面 所成的角為 ,則 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 是數(shù)列 的前 項(xiàng)和,并且 ,對(duì)任意正整數(shù) , ,設(shè) ( ).
(1)證明:數(shù)列 是等比數(shù)列,并求 的通項(xiàng)公式;
(2)設(shè) ,求證:數(shù)列 不可能為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在三棱錐 中, , , 為 的中點(diǎn).
(1)求證: ;
(2)設(shè)平面 平面 , , ,求二面角 的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為( )
A.y=tan(2x+ )
B.y=tan(x﹣ )
C.y=tan(2x﹣ )
D.y=tan2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)等差數(shù)列{an}中,a1+3a8+a15=120,求2a9-a10的值;
(2)在等差數(shù)列{an}中,a15=8,a60=20,求a75的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大。
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com