【題目】已知 是數(shù)列 的前 項和,并且 ,對任意正整數(shù) , ,設 ( ).
(1)證明:數(shù)列 是等比數(shù)列,并求 的通項公式;
(2)設 ,求證:數(shù)列 不可能為等比數(shù)列.
【答案】
(1)證明:∵Sn+1=4an+2,∴Sn=4an-1+2(n≥2),
兩式相減:an+1=4an-4an-1(n≥2),∴an+1=4(an-an-1)(n≥2),
∴bn=an+1-2an ,
∴bn+1=an+2-2an+1=4(an+1-an)-2an+1 , bn+1=2(an+1-2an)=2bn(n∈N*),
∴ ,∴{bn}是以2為公比的等比數(shù)列,
∵b1=a2-2a1 , 而a1+a2=4a1+2,∴a2=3a1+2=5,b1=5-2=3,
∴bn=32n-1(n∈N*)
(2)解:) ,假設 為等比數(shù)列,則有
= , n≥2, 則有 =0
與 ≥1矛盾,所以假設不成立,則原結(jié)論成立,即
數(shù)列 不可能為等比數(shù)列
【解析】(1)根據(jù)給出的遞推式可得到數(shù)列各項之間的關系,代入后可得到與的關系進而求出公比。分別另n=1,2后可求出的首項,即可求出的通項公式。
(2)根據(jù)(1)的結(jié)論易得的通項,根據(jù)化簡后得到,,顯然不成立,故數(shù)列不可能為等比數(shù)列。
科目:高中數(shù)學 來源: 題型:
【題目】若平面點集 滿足:任意點 ,存在 ,都有 ,則稱該點集 是“ 階聚合”點集,F(xiàn)有四個命題:
①若 ,則存在正數(shù) ,使得 是“ 階聚合”點集;
②若 ,則 是“ 階聚合”點集;
③若 ,則 是“2階聚合”點集;
④若 是“ 階聚合”點集,則 的取值范圍是 .
其中正確命題的序號為( )
A.①④
B.②③
C.①②
D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足:a1=,a2=2,3(an+1-2an+an-1)=2.
(1)證明:數(shù)列{an+1-an}是等差數(shù)列;
(2)求使+…+成立的最小的正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線 的焦點F,斜率為 的直線交拋物線于 兩點,且 .
(1)求該拋物線E的方程;
(2)過點F任意作互相垂直的兩條直線 ,分別交曲線E于點C,D和M,N.設線段 的中點分別為P,Q,求證:直線PQ恒過一個定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com