【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線: (為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】韓國民意調(diào)查機(jī)構(gòu)“蓋洛普韓國”2016年11月公布的民調(diào)結(jié)果顯示,受“閨蜜門”時(shí)間影響,韓國總統(tǒng)樸槿惠的民意支持率持續(xù)下跌,在所調(diào)查的1000個(gè)對(duì)象中,年齡在[20,30)的群體有200人,支持率為0%,年齡在[30,40)和[40,50)的群體中,支持率均為3%;年齡在[50,60)和[60,70)的群體中,支持率分別為6%和13%,若在調(diào)查的對(duì)象中,除[20,30)的群體外,其余各年齡層的人數(shù)分布情況如頻率分布直方圖所示,其中最后三組的頻數(shù)構(gòu)成公差為100的等差數(shù)列.
(1)依頻率分布直方圖求出圖中各年齡層的人數(shù)
(2)請(qǐng)依上述支持率完成下表:
年齡分布 是否支持 | [30,40)和[40,50) | [50,60)和[60,70) | 合計(jì) |
支持 | |||
不支持 | |||
合計(jì) |
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為年齡與支持率有關(guān)?
附表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中 參考數(shù)據(jù):125×33=15×275,125×97=25×485)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上不具有單調(diào)性.
(1)求實(shí)數(shù)的取值范圍;
(2)若是的導(dǎo)函數(shù),設(shè),試證明:對(duì)任意兩個(gè)不相等正數(shù),不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中, ,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)的圖象過原點(diǎn),對(duì),恒有成立,設(shè)數(shù)列滿足.
(I)求證:對(duì),恒有成立;
(II)求函數(shù)的表達(dá)式;
(III)設(shè)數(shù)列前項(xiàng)和為,求的值.
【答案】(I)證明見解析;(II);(III)2018.
【解析】試題分析:
(1)左右兩側(cè)做差,結(jié)合代數(shù)式的性質(zhì)可證得,即對(duì),恒有:成立;
(2)由已知條件可設(shè),給定特殊值,令,從而可得:,則,,從而有恒成立,據(jù)此可知,則.
(3)結(jié)合(1)(2)的結(jié)論整理計(jì)算可得:,據(jù)此分組求和有:.
試題解析:
(1)(僅當(dāng)時(shí),取“=”)
所以恒有:成立;
(2)由已知條件可設(shè),則中,令,
從而可得:,所以,即,
又因?yàn)?/span>恒成立,即恒成立,
當(dāng)時(shí),,不合題意舍去,
當(dāng)時(shí),即,所以,所以.
(3),
所以,
即.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù) 為定義在上的奇函數(shù).
(1)求函數(shù)的值域;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,如果直線與軸分別交于和,問是否為定值?若是求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其圖象與軸交于, 兩點(diǎn),且.
(Ⅰ)求的取值范圍;
(Ⅱ)證明: (為的導(dǎo)函數(shù)).
(Ⅲ)設(shè)點(diǎn)在函數(shù)圖象上,且為等腰直角三角形,記,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問題.規(guī)定正確回答問題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是 ,且各階段通過與否相互獨(dú)立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競(jìng)賽中回答問題的個(gè)數(shù)為,求的分布列、數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com