如圖中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)若過(guò)點(diǎn)B(2,0)的直線(xiàn)L(斜率不等于零)與橢圓交于不同的兩點(diǎn)E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線(xiàn)L的方程。
 
(1)(2)
(I)設(shè)橢圓的方程為,則①,
∵拋物線(xiàn)的焦點(diǎn)為(0, 1),  ……………………………………….2分
 ②
由①②解得.    …………………………………………………………5分
∴橢圓的標(biāo)準(zhǔn)方程為.    …………………………………………………6分
(II)如圖,由題意知的斜率存在且不為零,
設(shè)方程為 ①,
將①代入,整理,得
,
…………………………………9分
設(shè)、,  則 ②
, 則,由此可得 ,且.
由②知 .
, 即…………………………………12分
所求直線(xiàn)L的方程為:……………………………………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)已知中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的兩個(gè)短軸端點(diǎn)和左右焦點(diǎn)所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,2)的直線(xiàn)l與橢圓交于點(diǎn)A,B,當(dāng)△OAB面積最大時(shí),求直線(xiàn)l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),與直線(xiàn)相切的交橢圓于點(diǎn),恰好是直線(xiàn)的切點(diǎn).
(1)求該橢圓的離心率;
(2)若點(diǎn)到橢圓的右準(zhǔn)線(xiàn)的距離為,過(guò)橢圓的上頂點(diǎn)A的直線(xiàn)與交于B、C兩點(diǎn),且,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上的任意一點(diǎn),則的最大值是                              (     )
、9        、16            、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點(diǎn),若在其右準(zhǔn)線(xiàn)上存在點(diǎn)
使得線(xiàn)段的垂直平分線(xiàn)恰好經(jīng)過(guò),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知方程+=1表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是       (   )
        
A.m<-1或1<m<B.1<m<2
C.m<-1或1<m<2D.m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),點(diǎn)A,B是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,過(guò)點(diǎn)A,B分別作拋物線(xiàn)的兩條切線(xiàn),設(shè)兩切線(xiàn)的交點(diǎn)為M,試推斷是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓與軸的負(fù)半軸交于點(diǎn),與軸的正半軸交于點(diǎn),是左焦點(diǎn)且到直線(xiàn)的距離,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),則的最大值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案