11.已知函數(shù)f(x)=asinx-x+b(a、b均為大于零的常數(shù)).設(shè)函學(xué)f(x)在x=$\frac{π}{3}$處有極值,對于一切x∈[0,$\frac{π}{2}$],不等式f(x)>sinx+cosx總成立,求實(shí)數(shù)b的取值范圍.

分析 f(x)進(jìn)行求導(dǎo),利用函數(shù)f(x)在x=$\frac{π}{3}$處有極值,可得f′($\frac{π}{3}$)=0,求出a的值,將問題轉(zhuǎn)化為b>x+cosx-sinx對一切x∈[0,$\frac{π}{2}$],恒成立,利用常數(shù)分離法,根據(jù)函數(shù)的導(dǎo)數(shù)及正弦函數(shù)圖象及性質(zhì)求得函數(shù)的單調(diào)性及最值,即可求得實(shí)數(shù)b的取值范圍.

解答 解:∵f(x)=asinx-x+b,
∴f'(x)=acosx-1,
由題意得f'($\frac{π}{3}$)=0,即acos$\frac{π}{3}$-1=0,a=2,
問題等價(jià)于b>x+cosx-sinx對一切x∈[0,$\frac{π}{2}$]恒成立,
記g(x)=x+cosx-sinx,g′(x)=1-sinx-cosx=1-$\sqrt{2}$sin(x+$\frac{π}{4}$),
∵x∈[0,$\frac{π}{2}$],x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1,
∴1≤$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$,
∴g'(x)≤0,即g(x)在[0,$\frac{π}{2}$],上是減函數(shù),
∴g(x)max=g(0)=1,于是b>1,
故b的取值范圍是(1,+∞).

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)最值與極值,考查函數(shù)的恒成立問題,三角恒等變換,正弦函數(shù)圖象及性質(zhì),考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的通項(xiàng)為an=(-1)n(4n-3),則數(shù)列{an}的前50項(xiàng)和T50=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在長方體ABCD-A1B1C1D1中,已知底面ABCD是邊長為1的正方形,側(cè)棱AA1=2,P是側(cè)棱CC1上的一點(diǎn),CP=m(0<m<2).
(Ⅰ)試問直線B1D1與AP能否垂直?并說明理由;
(Ⅱ)若直線AP與平面BDD1B1所成角為60°,試確定m值;
(Ⅲ)若m=1,求平面PA1D1與平面PAB所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}的首項(xiàng)為2,且2a1•a2=a3,且bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,設(shè){bn}的前n項(xiàng)和為Tn
(1)求{an}的通項(xiàng)公式;
(2)求Tn,并求使不等式Tn>$\frac{k}{2016}$對一切n∈N*都成立的正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax+lnx,其中a為常數(shù).
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若關(guān)于x的不等式f(x)>1有解,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間(0,2)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{lnx}{1+x}$-lnx在x=x0處取得極大值,下列各式正確的是②④.(填序號)
①f(x0)<x0;②f(x0)=x0;③f(x0)>x0;④x0<$\frac{1}{2}$;⑤x0$>\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足an+1-an=1,a1=1,等比數(shù)列{bn},記數(shù)列 {bn}的前n項(xiàng)和為Sn,且b2=$\frac{16}{25}$,S2=$\frac{36}{25}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)設(shè)cn=an-bn,問數(shù)列{cn}是否存在最大項(xiàng)?若存在,求出最大項(xiàng);若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且g(x)=2f(x)+f′(x),把g(x)的圖象向右平移φ(φ>0)個(gè)單位,得到的函數(shù)為偶函數(shù),則φ的最小值為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{12}$D.$\frac{π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某地區(qū)氣象臺(tái)統(tǒng)計(jì),該地區(qū)下雨的概率是 $\frac{4}{15}$,刮風(fēng)的概率為 $\frac{2}{5}$,既刮風(fēng)又下雨的概率為 $\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(B|A)等于( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{10}$D.$\frac{8}{75}$

查看答案和解析>>

同步練習(xí)冊答案