【題目】若數(shù)列滿足,數(shù)列數(shù)列,記.

1)寫出一個(gè)滿足,且數(shù)列;

2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;

3)對任意給定的整數(shù),是否存在首項(xiàng)為0數(shù)列,使得?如果存在,寫出一個(gè)滿足條件的數(shù)列;如果不存在,說明理由.

【答案】10,1,0,1,0;(2)證明見解析;(3)見解析

【解析】

(1)根據(jù)可考慮寫出交替的數(shù)列.

(2)先證明必要性,根據(jù)數(shù)列是遞增數(shù)列,可得,進(jìn)而求得.再證明充分性,因?yàn)?/span>,,再累加可得證明即可.

(3) 設(shè),則,再累加求得,再分析的奇偶,根據(jù)整除的性質(zhì),先假設(shè)存在再證明矛盾即可.

10,1,0,1,0是一個(gè)滿足條件的數(shù)列.

2)必要性:因?yàn)?/span>數(shù)列是遞增數(shù)列,

所以,

所以是首項(xiàng)為13,公差為1的等差數(shù)列.

所以,

充分性:由于,,

,

……

,

所以,即,

又因?yàn)?/span>,,

所以,

,即是遞增數(shù)列.

綜上所述,結(jié)論成立.

3)設(shè),則,

因?yàn)?/span>,

,

……

,

所以

,

因?yàn)?/span>,所以為偶數(shù)(

所以為偶數(shù),

所以要使,必須使為偶數(shù),

4整除,亦即,

當(dāng)時(shí),數(shù)列的項(xiàng)滿足,,,

此時(shí),有成立,

當(dāng)時(shí),數(shù)列的項(xiàng)滿足,,,時(shí),亦有成立,

當(dāng)時(shí),不能被4整除,此時(shí)不存在數(shù)列,使得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一點(diǎn),過點(diǎn)軸的垂線交軸于點(diǎn),點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論上的單調(diào)性;

2)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax﹣(a+2lnx2,其中aR

1)當(dāng)a4時(shí),求函數(shù)fx)的極值;

2)試討論函數(shù)fx)在(1e)上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 平面, 的中點(diǎn).

(1)證明: 平面

(2)已知 , 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)若,討論的零點(diǎn)個(gè)數(shù);

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,,,,為線段的中點(diǎn).

1)求證:平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個(gè)科目,為了了解學(xué)生對這兩個(gè)科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB2a+b

1)求角C的大;

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

同步練習(xí)冊答案