【題目】設(shè)隨機(jī)變量X的概率分布列為

X

1

2

3

4

P

m

則P(|X﹣3|=1)=(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)概率分布的定義得出: +m =1.得m= , 隨機(jī)變量X的概率分布列為

X

1

2

3

4

P

∴P(|X﹣3|=1)=P(4)+P(2)=
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從一批有10個(gè)合格品與3個(gè)次品的產(chǎn)品中,一件一件地抽取產(chǎn)品,設(shè)各個(gè)產(chǎn)品被抽取到的可能性相同.在下列三種情況下,分別求出直到取出合格品為止時(shí)所需抽取次數(shù)x的分布列.
(1)每次取出的產(chǎn)品都不放回此批產(chǎn)品中;
(2)每次取出的產(chǎn)品都立即放回此批產(chǎn)品中,然后再取出一件產(chǎn)品;
(3)每次取出一件產(chǎn)品后總以一件合格品放回此批產(chǎn)品中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:“存在 ”,命題q:“曲線 表示焦點(diǎn)在x軸上的橢圓”,命題s:“曲線 表示雙曲線”
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(x)不為常值函數(shù),有以下命題: ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
②若對(duì)任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對(duì)于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對(duì)稱(chēng)軸方程為x=2n+1(n∈Z);
④對(duì)于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數(shù),
其中所有正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在[﹣1,1]上的函數(shù)f(x)滿足:①對(duì)任意a,b∈[﹣1,1],且a+b≠0,都有 >0成立;②f(x)在[﹣1,1]上是奇函數(shù),且f(1)=1.
(1)求證:f(x)在[﹣1,1]上是單調(diào)遞增函數(shù);
(2)解關(guān)于x不等式f(x)<f( x+1);
(3)若f(x)≤m2﹣2am﹣2對(duì)所有的x∈[﹣1,1]及a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉
的時(shí)間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(Ⅰ)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D是BC的中點(diǎn),E,F(xiàn)是AD上的兩個(gè)三等分點(diǎn), =4, =﹣1,則 的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計(jì)如下表

學(xué)生

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統(tǒng)計(jì)數(shù)據(jù)看,甲、乙兩個(gè)班哪個(gè)班成績(jī)更穩(wěn)定數(shù)字特征說(shuō)明

(2)若把上表數(shù)據(jù)作為學(xué)生投籃命中率,規(guī)定兩個(gè)班級(jí)的1號(hào)和2號(hào)同學(xué)分別代表自己的班級(jí)參加比賽,每人投籃一次,將甲、乙兩個(gè)班兩名同學(xué)投中的次數(shù)之和分別記作,試求的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案