【題目】定義在[﹣1,1]上的函數(shù)f(x)滿(mǎn)足:①對(duì)任意a,b∈[﹣1,1],且a+b≠0,都有 >0成立;②f(x)在[﹣1,1]上是奇函數(shù),且f(1)=1.
(1)求證:f(x)在[﹣1,1]上是單調(diào)遞增函數(shù);
(2)解關(guān)于x不等式f(x)<f( x+1);
(3)若f(x)≤m2﹣2am﹣2對(duì)所有的x∈[﹣1,1]及a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:任取x1、x2∈[﹣1,1],且x1<x2,
則f(x1)﹣f(x2)=f(x1)+f(﹣x2)
∵ >0,x1﹣x2<0,
∴f(x1)﹣f(x2)<0.
則f(x)是[﹣1,1]上的增函數(shù).
(2)解:若f(x)<f( x+1),則﹣1≤x< x+1≤1,
解得:x∈[﹣1,0],
故不等式f(x)<f( x+1)的解集為[﹣1,0];
(3)解:要使f(x)≤m2﹣2am﹣2對(duì)所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,
只須f(x)max≤m2﹣2am﹣2,即1≤m2﹣2am﹣2對(duì)任意的a∈[﹣1,1]恒成立,
亦即m2﹣2am﹣3≥0對(duì)任意的a∈[﹣1,1]恒成立.
令g(a)=m2﹣2am﹣3,
只須 ,
解得m≤﹣3或m≥3.
【解析】(1)利用函數(shù)單調(diào)性的定義進(jìn)行證明:在區(qū)間[﹣1,1]任取x1、x2 , 且x1<x2 , 利用函數(shù)為奇函數(shù)的性質(zhì)結(jié)合已知條件中的分式,可以證得f(x1)﹣f(x2)<0,所以函數(shù)f(x)是[﹣1,1]上的增函數(shù).(2)根據(jù)(1)中單調(diào)性,可得﹣1≤x< x+1≤1,解得答案;(3)根據(jù)函數(shù)f(x)≤m2﹣2am﹣2對(duì)所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,說(shuō)明f(x)的最大值1小于或等于右邊,因此先將右邊看作a的函數(shù),m為參數(shù)系數(shù),解不等式組,即可得出m的取值范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)單調(diào)性的性質(zhì),掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市的教育主管部門(mén)對(duì)所管轄的學(xué)校進(jìn)行年終督導(dǎo)評(píng)估,為了解某學(xué)校師生對(duì)學(xué)校教學(xué)管理的滿(mǎn)意度,分別從教師和不同年級(jí)的同學(xué)中隨機(jī)抽取若干師生,進(jìn)行評(píng)分(滿(mǎn)分100分),繪制如下頻率分布直方圖(分組區(qū)間為, , , , , ),并將分?jǐn)?shù)從低到高分為四個(gè)等級(jí):
滿(mǎn)意度評(píng)分 | ||||
滿(mǎn)意度等級(jí) | 不滿(mǎn)意 | 基本滿(mǎn)意 | 滿(mǎn)意 | 非常滿(mǎn)意 |
已知滿(mǎn)意度等級(jí)為基本滿(mǎn)意的有340人.
(1)求表中的值及不滿(mǎn)意的人數(shù);
(2)在等級(jí)為不滿(mǎn)意的師生中,老師占,現(xiàn)從該等級(jí)師生中按分層抽樣抽取12人了解不滿(mǎn)意的原因,并從中抽取3人擔(dān)任整改督導(dǎo)員,記為老師整改督導(dǎo)員的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在面積為1的正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則△PAB的面積大于等于 的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的,得到函數(shù)的圖象.已知函數(shù).
(1)若函數(shù)在區(qū)間上的最大值為,求的值;
(2)設(shè)函數(shù),證明:對(duì)任意,都存在,使得在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售某種品牌的空調(diào)器,每周周初購(gòu)進(jìn)一定數(shù)量的空調(diào)器,商場(chǎng)每銷(xiāo)售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤(rùn)200元. (Ⅰ)若該商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(rùn)(單位:元)關(guān)于當(dāng)周需求量n(單位:臺(tái),n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場(chǎng)記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺(tái)),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,X表示當(dāng)周的利潤(rùn)(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中.
(1)設(shè) = ,求證:△ABC是等腰三角形;
(2)設(shè)向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ∥ ,若sinA= ,求sin( ﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市交警在該市一交通崗前設(shè)點(diǎn)對(duì)過(guò)往的車(chē)輛進(jìn)行抽查,經(jīng)過(guò)一晚的抽查,共查出酒后駕車(chē)者60名,圖甲是用酒精測(cè)試儀對(duì)這60 名酒后駕車(chē)者血液中酒精濃度進(jìn)行檢測(cè)后依所得結(jié)果畫(huà)出的頻率分布直方圖.
(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,圖乙的程序框圖是對(duì)這60名酒后駕車(chē)者血液的酒精濃度做進(jìn)一步的統(tǒng)計(jì),求出圖乙輸出的S值,并說(shuō)明S的統(tǒng)計(jì)意義;(圖乙中數(shù)據(jù)與分別表示圖甲中各組的組中值及頻率)
(2)本次行動(dòng)中,吳、李兩位先生都被酒精測(cè)試儀測(cè)得酒精濃度屬于的范圍,但他倆堅(jiān)稱(chēng)沒(méi)喝那么多,是測(cè)試儀不準(zhǔn),交警大隊(duì)隊(duì)長(zhǎng)決定在被酒精測(cè)試儀測(cè)得酒精濃度屬于范圍的酒后駕車(chē)者中隨機(jī)抽出2人抽血檢驗(yàn), 為吳、李兩位先生被抽中的人數(shù),求的分布列,并求吳、李兩位先生至少有1人被抽中的概率;
(3)很多人在喝酒后通過(guò)喝茶降解體內(nèi)酒精濃度,但李時(shí)珍就曾指出酒后喝茶傷腎. 為研究長(zhǎng)期酒后喝茶與腎損傷是否有關(guān),某科研機(jī)構(gòu)采集了統(tǒng)計(jì)數(shù)據(jù)如下表,請(qǐng)你從條件概率的角度給出判斷結(jié)果,并說(shuō)明理由.
沒(méi)有腎損傷 | 有腎損傷 | |
長(zhǎng)期酒后喝茶 | 2099 | 49 |
酒后不喝茶 | 7775 | 42 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com