分析 (1)求出函數(shù)的導數(shù),計算g′(4),求出切線方程即可;
(2)設出切點為M(x0,y0),表示出切線方程,求出切點坐標,從而求出切線方程即可.
解答 解:(1)∵g(x)=$\sqrt{x}$,∴g′(x)=$\frac{1}{2\sqrt{x}}$,∴g′(4)=$\frac{1}{4}$,
∴曲線g(x)在點(4,2)處的切線方程為y-2=$\frac{1}{4}$(x-4),即y=$\frac{1}{4}$x+1;
(2)曲線方程為y=x3-3x,點A(0,16)不在曲線上,
設切點為M(x0,y0),則點M的坐標滿足y0=x03-3x0,
因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0),
將A(0,16)代入切線方程化簡得x03=-8,解得x0=-2.
所以切點為M(-2,-2),切線方程為9x-y+16=0.
點評 本題考查了切線方程問題,考查導數(shù)的應用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P(3)=3 | B. | P(5)=1 | C. | P(2003)>P(2005) | D. | P(2008)<P(2010) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{2π}{3}$個長度單位 | B. | 向左平移$\frac{π}{12}$個長度單位 | ||
C. | 向左平移$\frac{π}{3}$個長度單位 | D. | 向右平移$\frac{π}{12}$個長度單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年齡x歲 | 20 | 30 | 40 | 50 |
周均學習成語知識時間y(小時) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com