5.已知隨機(jī)變量ξ服從正態(tài)分布B(1,22),若P(ξ≤2)=0.8,則P(0≤ξ≤2)=( 。
A.1B.0.8C.0.6D.0.3

分析 隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),得到曲線關(guān)于x=1對(duì)稱(chēng),根據(jù)曲線的對(duì)稱(chēng)性得到P(0≤ξ≤1)=0.3,從而得到所求.

解答 解:∵隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),
∴正態(tài)曲線的對(duì)稱(chēng)軸為μ=1,
∴P(ξ≥1)=P(ξ≤1)=0.5
又P(ξ≤2)=0.8
∴P(1≤ξ≤2)=0.3,
根據(jù)對(duì)稱(chēng)性得P(0≤ξ≤1)=0.3
∴P(0≤ξ≤2)=0.6,
故選:C.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查概率的性質(zhì),是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某企業(yè)生產(chǎn)的一種產(chǎn)品的廣告費(fèi)用x(單位:萬(wàn)元)與銷(xiāo)售額y(單位:萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)如表:
 廣告費(fèi)用x 1 2 3 4 5
 銷(xiāo)售額y 10 15 25 45 55
(1)根據(jù)上述數(shù)據(jù),求出銷(xiāo)售額y(萬(wàn)元)關(guān)于廣告費(fèi)用x(萬(wàn)元)的線性回歸方程;
(2)如果企業(yè)要求該產(chǎn)品的銷(xiāo)售額不少于36萬(wàn)元,則投入的廣告費(fèi)用應(yīng)不少于多少萬(wàn)元?
(參考數(shù)值:$\sum_{i=1}^{5}{x}_{i}=15$,$\sum_{i=1}^{5}{y}_{i}=150$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}=570$,$\sum_{i=1}^{5}{{x}_{i}}^{2}=55$,$\sum_{i=1}^{5}{{y}_{i}}^{2}=6000$.

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測(cè)量活動(dòng),如圖,假設(shè)待測(cè)量的樹(shù)木AE的高度H(m),垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點(diǎn)共線),試根據(jù)上述測(cè)量方案,回答如下問(wèn)題:
(1)若測(cè)得α=60°、β=30°,試求H的值;
(2)經(jīng)過(guò)分析若干次測(cè)得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹(shù)木的距離d(單位:m),使α與β之差較大時(shí),可以提高測(cè)量精確度.
若樹(shù)木的實(shí)際高度為8m,試問(wèn)d為多少時(shí),α-β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=4sinxcos(x-$\frac{π}{6}$)-1
(1)求函數(shù)f(x)的最小正周期及其圖象的對(duì)稱(chēng)中心坐標(biāo)
(2)求函數(shù)f(x)的單調(diào)增區(qū)間及f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)復(fù)數(shù)z滿足|z|=$\sqrt{13}$,且(2+3i)z(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.直線l過(guò)點(diǎn)P(1,4),且分別交x軸的正半軸和y軸的正半軸于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)|OA|+|OB|最小時(shí),求l的方程;
(2)若△AOB的面積最小,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過(guò)點(diǎn)($\frac{1}{2},-\frac{\sqrt{14}}{4}$),點(diǎn)A(x0,y0)為橢圓C上的點(diǎn),且以A為圓心的圓過(guò)橢圓C的右焦點(diǎn)F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)記M(0,y1)、N(0,y2)是圓A上的兩點(diǎn),若|FM|•|FN|>p恒成立,求實(shí)數(shù)p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[0,4]內(nèi)隨機(jī)選一個(gè)實(shí)數(shù)x,該實(shí)數(shù)恰好在區(qū)間[1,3]內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某單位有職工480人,其中青年職工210人,中年職工150人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為( 。
A.4B.5C.7D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案