焦點在x軸上,中心在原點,長軸長為10,短軸長為8的橢圓方程為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)曲線的類型,假設橢圓的標準方程,再根據(jù)長軸長為10,短軸長為8,即可求得橢圓方程.
解答:解:設橢圓的標準方程為:
∵長軸長為10,短軸長為8
∴2a=10,2b=8
∴a=5,b=4
∴所求橢圓方程為
故選D.
點評:本題重點考查橢圓的標準方程,考查待定系數(shù)法的運用,解題的關(guān)鍵是確定曲線的類型,假設橢圓的標準方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上、中心在原點的橢圓上一點到兩焦點的距離之和為4,若該橢圓的離心率
3
2
,則橢圓的方程是( 。
A、
x2
4
+y2=1
B、x2+
y2
4
=1
C、
x2
4
+
y2
3
=1
D、
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左、右頂點分別為A1、A2,點M是橢圓上異于A1、A2的任意一點,設直線MA1、MA2的斜率分別為kMA1、kMA2,證明kMA1kMA2為定值;
(Ⅲ)設橢圓方程
x2
a2
+
y2
b2
=1
,A1、A2為長軸兩個端點,M為橢圓上異于A1、A2的點,kMA1、kMA2分別為直線MA1、MA2的斜率,利用上面(Ⅱ)的結(jié)論得kMA1kMA2=
 
(只需直接填入結(jié)果即可,不必寫出推理過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一焦點在x軸上,中心在原點的雙曲線的實軸等于虛軸,且圖象經(jīng)過點
2,
3

(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個公共點,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上,中心在坐標原點的橢圓C的離心率為
4
5
,且過點(
10
2
3
,1)
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左、右頂點分別為A1、A2,點M是橢圓上異于A1、A2的任意一點,設直線MA1、MA2的斜率分別為KMA1、KMA2,證明KMA1•KMA2為定值;
(Ⅲ)設橢圓方程
x2
a2
+
y2
b2
=1
,A1、A2為長軸兩個端點,M為橢圓上異于A1、A2的點,KMA1、KMA2分別為直線MA1、MA2的斜率,利用上面(Ⅱ)的結(jié)論得KMA1•KMA2=
-
b
a
-
b
a
(只需直接填入結(jié)果即可,不必寫出推理過程).

查看答案和解析>>

同步練習冊答案