分析 利用已知條件求出2α的正弦函數(shù)與余弦函數(shù)方程,利用同角三角函數(shù)基本關(guān)系式以及兩角和與差的三角函數(shù)求解即可.
解答 解:f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,f(α)=$\frac{5}{6}$,
可得sin(2α+$\frac{π}{6}$)+$\frac{1}{2}$=$\frac{5}{6}$.sin(2α+$\frac{π}{6}$)=$\frac{1}{3}$,
α∈(0,$\frac{π}{6}$),可得2α+$\frac{π}{6}$∈(0,$\frac{π}{2}$).
cos(2α+$\frac{π}{6}$)=$\sqrt{1-si{n}^{2}(2α+\frac{π}{6})}$=$\frac{2\sqrt{2}}{3}$.
sin2α=sin(2α+$\frac{π}{6}$-$\frac{π}{6}$)=sin(2α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(2α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{1}{3}×\frac{\sqrt{3}}{2}$-$\frac{2\sqrt{2}}{3}×\frac{1}{2}$=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
點(diǎn)評(píng) 本題重點(diǎn)考查了三角恒等變換公式、輔助角公式、二倍角公式、三角函數(shù)的圖象與性質(zhì)等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 17π | B. | 18π | C. | 20π | D. | 28π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (1,+∞) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{8}{25}$ | D. | $\frac{9}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com