14.從甲、乙等5名學(xué)生中隨機(jī)選出2人,則甲被選中的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{8}{25}$D.$\frac{9}{25}$

分析 從甲、乙等5名學(xué)生中隨機(jī)選出2人,先求出基本事件總數(shù),再求出甲被選中包含的基本事件的個(gè)數(shù),同此能求出甲被選中的概率.

解答 解:從甲、乙等5名學(xué)生中隨機(jī)選出2人,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
甲被選中包含的基本事件的個(gè)數(shù)m=${C}_{1}^{1}{C}_{4}^{1}$=4,
∴甲被選中的概率p=$\frac{m}{n}$=$\frac{4}{10}$=$\frac{2}{5}$.
故選:B.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a、b、c分別為△ABC的三個(gè)內(nèi)角A、B、C的對邊,2sinAcos2$\frac{C}{2}$+2sinC•cos2$\frac{A}{2}$=3sinB
(1)證明a、b、c成等差數(shù)列;
(2)若∠B為銳角,且a=btanA,求a:b:c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,已知f(α)=$\frac{5}{6}$,且α∈(0,$\frac{π}{6}$),求sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={1,2,3},B={x|x2<9},則A∩B=(  )
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則2x+y的最大值為(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若a=0時(shí),y=G(x)為曲線y=F(x)的切線,求b的值;
(Ⅱ)若f(x)=F(x)-G(x),f(1)=0.證明:當(dāng)e-2<a<1時(shí),函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x∈N|x2-2x-3<0},B={1,x2},若A∪B={0,1,2},則這樣的實(shí)數(shù)x的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.4個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xoOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)M平行于直線l的直線與曲線C交于A、B兩點(diǎn),若|MA|•|MB|=3,求點(diǎn)M軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.中國古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=( 。
A.7B.12C.17D.34

查看答案和解析>>

同步練習(xí)冊答案