【題目】用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).
(1)試規(guī)定的值,并解釋其實際意義;
(2)試根據(jù)假定寫出函數(shù)應(yīng)該滿足的條件和具有的性質(zhì);
(3)設(shè).現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較省?說明理由.
【答案】(1),表示沒有用水洗時,蔬菜上殘留的農(nóng)藥量將保持原樣(2)函數(shù)應(yīng)該滿足的條件和具有的性質(zhì)是:在,上單調(diào)遞減,且(3)答案不唯一,具體見解析
【解析】
(1)由表示未清洗的意思,從而得解;
(2)結(jié)合題干信息可得和及的范圍;
(3)分別計算兩種方式的農(nóng)藥殘留量,進(jìn)而作差比較大小即可.
(1),表示沒有用水洗時,蔬菜上殘留的農(nóng)藥量將保持原樣.
(2)函數(shù)應(yīng)該滿足的條件和具有的性質(zhì)是:在,上單調(diào)遞減,且.
(3)設(shè)僅清洗一次,殘留在農(nóng)藥量為,
清洗兩次后,殘留的農(nóng)藥量為,
則;
于是,當(dāng)時,清洗兩次后殘留在農(nóng)藥量較少;當(dāng)時,兩種清洗方法具有相同的效果;
當(dāng)時,一次清洗殘留的農(nóng)藥量較少.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校冬季長跑活動中,學(xué)校要給獲得一二等獎的學(xué)生購買獎品,要求花費(fèi)總額不得超過200元.已知一等獎和二等獎獎品的單架分別為20元10元,一等獎人數(shù)與二等獎人數(shù)的比值不得高于,且獲得一等獎的人數(shù)不能少于2人,有下列四個結(jié)論:①最多可以購買4份一等獎獎品②最多可以購買16份二等獎獎品③購買獎品至少要花費(fèi)100元④共有20種不同的購買獎品方案其中正確結(jié)論的序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校計劃面向高一年級名學(xué)生開設(shè)校本選修課程,為確保工作的順利實施,先按性別進(jìn)行分層抽樣,抽取了名學(xué)生對社會科學(xué)類,自然科學(xué)類這兩大類校本選修課程進(jìn)行選課意向調(diào)查,其中男生有人.在這名學(xué)生中選擇社會科學(xué)類的男生、女生均為人.
(Ⅰ)分別計算抽取的樣本中男生及女生選擇社會科學(xué)類的頻率,并以統(tǒng)計的頻率作為概率,估計實際選課中選擇社會科學(xué)類學(xué)生數(shù);
(Ⅱ)根據(jù)抽取的名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為科類的選擇與性別有關(guān)?
選擇自然科學(xué)類 | 選擇社會科學(xué)類 | 合計 | |
男生 | |||
女生 | |||
合計 |
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實數(shù)的取值范圍;
(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)若函數(shù)在為增函數(shù),求實數(shù)的值;
(2)若函數(shù)為偶函數(shù),對于任意,任意,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 曲線的參數(shù)方程為為參數(shù)) ;在以原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線,的交點分別為 (異于原點). 當(dāng)斜率時, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到函數(shù)的圖象,已知函數(shù) ,則當(dāng)函數(shù)有4個零點時的取值集合為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點A(-1,0),B(1,0),C(3,2),其外接圓為⊙H.
(1)若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程;
(2)對于線段BH上的任意一點P,若在以C為圓心的圓上都存在不同的兩點M,N,使得點M是線段PN的中點,求⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中錯誤的是( )
A.樣本頻率分布直方圖中的小矩形的面積就是對應(yīng)組的頻率
B.回歸直線過樣本點的中心
C.若樣本的平均數(shù)是2,方差是2,則數(shù)據(jù)的平均數(shù)是4,方差是4
D.拋擲一顆質(zhì)地均勻的骰子,事件“向上點數(shù)不大于3”和事件“向上點數(shù)不小于4”是對立事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com