18.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,則必有( 。
A.α2<β2B.α2>β2C.α<βD.α>β

分析 由題意可得αsinα>βsinβ,再根據(jù)y=xsinx為偶函數(shù),且在[0,$\frac{π}{2}$]上單調遞增,可得結論.

解答 解:α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,即αsinα>βsinβ,
再根據(jù)y=xsinx為偶函數(shù),且在[0,$\frac{π}{2}$]上單調遞增,可得|α|>|β|,即α2>β2,
故選:B.

點評 本題主要考查函數(shù)的單調性和奇偶性的綜合應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,在梯形ABCD中,AB∥CD,AB=3,AD=2,CD=1,M為AD的中點,若$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,則$\overrightarrow{AC}$•$\overrightarrow{BM}$=$-\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在銳角三角形ABC中,BC=3,AB=4,則AC的取值范圍是(  )
A.$({1,\sqrt{5}})$B.$({\sqrt{7},5})$C.$({\sqrt{5},\sqrt{13}})$D.$({\sqrt{5},5})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的首項a1=2,an+1=2an-1(n∈N*)
(Ⅰ)寫出數(shù)列{an}的前5項,并歸納猜想{an}的通項公式;
(Ⅱ)用數(shù)學歸納法證明(Ⅰ)中所猜想的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設命題p:?x0∈(0,+∞),3${\;}^{{x}_{0}}$+x0=2016,命題q:?a∈(0,+∞),f(x)=|x|-ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個算法的步驟如下:
第一步:輸入正數(shù)m的值;
第二步:求出不超過m的最大整數(shù)x;
第三步:計算y=2x+x;
第四步:輸出y的值.
如果輸出y的值為20,則輸入的m值只可能是下列各數(shù)中的( 。
A.3.1B.4.2C.5.3D.6.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知a,b∈R,若a2+b2-ab=1,則ab的取值范圍是[$-\frac{1}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知x,y滿足$\left\{\begin{array}{l}x-y-1≥0\\ x+y≥0\\ x≤3\end{array}\right.$,則(x-1)2+(y-1)2的取值范圍是(  )
A.[5,25]B.[1,25]C.$[{\frac{1}{2},20}]$D.$[{\frac{5}{2},20}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在等差數(shù)列{an}中,a1=2,公差為d,且a2,a3,a4+1成等比數(shù)列,則d=2.

查看答案和解析>>

同步練習冊答案