【題目】小明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設各場比賽相互獨立):
場次 | 投籃次數 | 命中次數 |
主場1 | 22 | 12 |
主場2 | 15 | 12 |
主場3 | 12 | 8 |
主場4 | 23 | 8 |
主場5 | 24 | 20 |
場次 | 投籃次數 | 命中次數 |
客場1 | 18 | 8 |
客場2 | 13 | 12 |
客場3 | 21 | 7 |
客場4 | 18 | 15 |
客場5 | 25 | 12 |
(1)從上述比賽中隨機選擇一場,求小明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機選擇一個主場和一個客場,求小明的投籃命中率一場超過0.6,一場不超過0.6的概率.
【答案】(1)0.5(2)
【解析】
(1)根據圖表直接判斷即可.
(2)根據獨立事件概率的公式求解即可.
解:(1)根據投籃統(tǒng)計數據,在10場比賽中,小明投籃命中率超過0.6的場次有5場,分別是主場2,主場3,主場5,客場2,客場4.所以在隨機選擇的一場比賽中,小明的投籃命中率超過0.6的概率是0.5.
(2)記事件A為“在隨機選擇的一場主場比賽中小明的投籃命中率超過0.6”,事件B為“在隨機選擇的一場客場比賽中小明的投籃命中率超過0.6”,事件C為“在隨機選擇的一個主場和一個客場中,小明的投籃命中率一場超過0.6,一場不超過0.6”
則,A,B獨立.
根據投籃統(tǒng)計數據,
.
所以,在隨機選擇的一個主場和一個客場中,小明的投籃命中率一場超過0.6,一場不超過0.6的概率為.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的焦點在軸上,虛軸長為4,且與雙曲線有相同漸近線.
(1)求雙曲線的方程.
(2)過點的直線與雙曲線的異支相交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在(﹣1,1)上的奇函數,且f().
(Ⅰ)求實數m,n的值,并用定義證明f(x)在(﹣1,1)上是增函數;
(Ⅱ)設函數g(x)是定義在(﹣1,1)上的偶函數,當x∈[0,1)時,g(x)=f(x),求函數g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(1)寫出直線的普通方程及曲線的直角坐標方程;
(2)已知點,點,直線過點且與曲線相交于,兩點,設線段的中點為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年,隨著中國第一款5G手機投入市場,5G技術已經進入高速發(fā)展階段.已知某5G手機生產廠家通過數據分析,得到如下規(guī)律:每生產手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產1萬臺的生產成本為1000萬元(總成本=固定成本+生產成本),銷售收入萬元滿足
(1)將利潤表示為產量萬臺的函數;
(2)當產量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續(xù)保人在一年內的出險情況,得到如下統(tǒng)計表:
出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
(1)由圓的性質類比出球的性質
(2)由求出,猜測出
(3)M,N是平面內兩定點,動點滿足,得點的軌跡是橢圓。
(4)由三角形的內角和是,四邊形內角和是,五邊形的內角和是,由此得凸多邊形的內角和是
結論正確的是( )
A. (1)(2)B. (2)(3)C. (1)(2)(4)D. (1)(2)(3)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現了一種相互轉化,相對統(tǒng)一的和諧美,定義:能夠將圓的周長和面積同時等分成兩個部分的函數稱為圓的一個“太極函數”,則下列有關說法中:
①對于圓的所有非常數函數的太極函數中,都不能為偶函數;
②函數是圓的一個太極函數;
③直線所對應的函數一定是圓的太極函數;
④若函數是圓的太極函數,則
所有正確的是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com