【題目】如圖,在四棱錐P﹣ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中點.
(1)求證:AM∥平面PCD;
(2)設(shè)點N是線段CD上的一動點,當點N在何處時,直線MN與平面PAB所成的角最大?并求出最大角的正弦值.
【答案】
(1)證明:以A為坐標原點,建立如圖所示的空間直角坐標系,則A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),P(0,0,2),M(0,1,1)
設(shè)平面PCD的法向量是
又
(2)解:由點N是線段CD上的一點,可設(shè)
;
;
平面PAB的一個法向量為
設(shè)MN與平面PAB成θ角,則
令1+λ=t∈[1,2]
當
∴當點N是線段CD上靠近點C的三等分點時,MN與平面PAB所成角最大,最大角的正弦值為
【解析】(1)以點A為原點建立如圖所示的空間直角坐標系,求出 的坐標,再求出平面平面PCD的一個法向量 ,由 =0且AM面PCD內(nèi)得答案;(2)利用空間向量求出使直線MN與平面PAB所成的角最大時N的位置,然后再求出平面PBN的一個法向量,而 是平面PAB的一個法向量,由兩個法向量所成角的余弦值求得結(jié)論.
【考點精析】通過靈活運用直線與平面平行的判定和空間角的異面直線所成的角,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍;
(3)證明: 且n>1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0對任意的θ∈(0, )恒成立,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|,a<0.
(1)證明f(x)+f(﹣ )≥2;
(2)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求實數(shù)m的取值范圍;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com