10.在△ABC中,A:B:C=4:1:1,則a:b:c=(  )
A.4:1:1B.2:1:1C.3:1:1D.$\sqrt{3}$:1:1

分析 由已知利用三角形內(nèi)角和定理可求A,B,C的值,利用正弦定理及特殊角的三角函數(shù)值即可計算得解.

解答 解:∵A:B:C=4:1:1,A+B+C=π,
∴解得:A=$\frac{2π}{3}$,B=C=$\frac{π}{6}$,
∴由正弦定理可得:a:b:c=sinA:sinB:sinC=$\frac{\sqrt{3}}{2}$:$\frac{1}{2}$:$\frac{1}{2}$=$\sqrt{3}$:1:1.
故選:D.

點評 本題主要考查了三角形內(nèi)角和定理,正弦定理及特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線C是平面內(nèi)到直線l1:x=-1和直線l2:y=1的距離之積等于常數(shù)k2(k>0)的點的軌跡,下列四個結(jié)論:
①曲線C過點(-1,1);
②曲線C關(guān)于點(-1,1)成中心對稱;
③若點P在曲線C上,點A、B分別在直線l1、l2上,則|PA|+|PB|不小于2k;
④設(shè)P0為曲線C上任意一點,則點P0關(guān)于直線l1:x=-1,點(-1,1)及直線f(x)對稱的點分別為P1、P2、P3,則四邊形P0P1P2P3的面積為定值4k2;其中,
所有正確結(jié)論的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$f(x)=\frac{{{{(x+3)}^0}}}{{\sqrt{|x|-x}}}$的定義域是(-∞,-3)∪(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線經(jīng)過點M($\sqrt{6},\sqrt{6}$).
(1)如果此雙曲線的漸近線為$y=±\sqrt{2}x$,求雙曲線的標(biāo)準(zhǔn)方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點A(1,0),B(4,0),圓C:(x-a)2+(y-a)2=1,若圓C上存在點M,使|MB|=2|MA|,則實數(shù)a的取值范圍為-$\frac{\sqrt{6}}{2}$≤a≤-$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{2}}{2}$≤a≤$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\sqrt{2}$,過左焦點F1(-c,0)作圓x2+y2=a2的切線,切點為E,延長F1E交拋物線y2=4cx于點P,則線段PE的長為( 。
A.2aB.3aC.$({1+\sqrt{5}})a$D.4a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)是單調(diào)函數(shù),則滿足f(x)=f(${\frac{x+1}{x+2}}$)的所有x值的和為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=x$\sqrt{1-{x^2}}$是( 。
A.奇函數(shù)B.偶函數(shù)
C.即是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等差數(shù)列{an}的前10項和為30,前20項和為100,則它的前30項和是(  )
A.130B.170C.210D.260

查看答案和解析>>

同步練習(xí)冊答案