9.設(shè)函數(shù)$f(x)=lnx+\frac{a}{x-1}$,(a>0)
(Ⅰ)當(dāng)$a=\frac{1}{30}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在$(0,\frac{1}{e})$內(nèi)有極值點(diǎn),當(dāng)x1∈(0,1),x2∈(1,+∞),求證:$f({x_2})-f({x_1})>2e-\frac{4}{3}$.(e=2.71828…)

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出f(x)的導(dǎo)數(shù),令g(x)=x2-(a+2)x+1,根據(jù)函數(shù)的單調(diào)性得到:$f({x_1})≤f(m)=lnm+\frac{a}{m-1}$;$f({x_2})≥f(n)=lnn+\frac{a}{n-1}$,作差得到新函數(shù)F(n)=2lnn+n-$\frac{1}{n}$,(n>e),根據(jù)函數(shù)的單調(diào)性求出其最小值即可證明結(jié)論成立.

解答 解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?,1)∪(1,+∞),
當(dāng)$a=\frac{1}{30}$時(shí),$f'(x)=\frac{{(x-\frac{5}{6})(x-\frac{6}{5})}}{{x{{(x-1)}^2}}}$,…(3分)
令f′(x)>0,得:$x>\frac{6}{5}$或$x<\frac{5}{6}$,
所以函數(shù)單調(diào)增區(qū)間為:$(0,\frac{5}{6})$,$(\frac{6}{5},+∞)$,
令f′(x)<0,得:$\frac{5}{6}<x<\frac{6}{5}$,
所以函數(shù)單調(diào)減區(qū)間為:$(\frac{5}{6},1)$,$(1,\frac{6}{5})$…(5分)
(Ⅱ)證明:$f'(x)=\frac{1}{x}-\frac{a}{{{{(x-1)}^2}}}=\frac{{{x^2}-(a+2)x+1}}{{x{{(x-1)}^2}}}$,
令:g(x)=x2-(a+2)x+1=(x-m)(x-n)=0,
所以:m+n=a+2,mn=1,若f(x)在$(0,\frac{1}{e})$內(nèi)有極值點(diǎn),
不妨設(shè)0<m<$\frac{1}{e}$,則:n=$\frac{1}{m}$>e,且a=m+n-2>e+$\frac{1}{e}$-2,
由f′(x)>0得:0<x<m或x>n,
由f′(x)<0得:m<x<1或1<x<n,
所以f(x)在(0,m)遞增,(m,1)遞減;(1,n)遞減,(n,+∞)遞增
當(dāng)x1∈(0,1)時(shí),$f({x_1})≤f(m)=lnm+\frac{a}{m-1}$;
當(dāng)x2∈(1,+∞)時(shí),$f({x_2})≥f(n)=lnn+\frac{a}{n-1}$,
所以:$f({x_2})-f({x_1})≥f(n)-f(m)=lnn+\frac{a}{n-1}-lnm-\frac{a}{m-1}=2lnn+a(\frac{1}{n-1}-\frac{1}{m-1})$=$2lnn+n-\frac{1}{n}$,n>e,
設(shè):$F(n)=2lnn+n-\frac{1}{n}$,n>e,則$F'(n)=\frac{2}{n}+1+\frac{2}{n^2}>0$,
所以:F(n)是增函數(shù),
所以$F(n)>F(e)=e+2-\frac{1}{e}$,
又:$e+2-\frac{1}{e}-(2e-\frac{4}{3})=-e-\frac{1}{e}+\frac{10}{3}=\frac{{-3{e^2}+10e-3}}{3e}=\frac{-(3e-1)(e-3)}{3e}>0$,
所以:$f({x_2})-f({x_1})>2e-\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用、函數(shù)恒成立問(wèn)題以及不等式的證明,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn
(1)若{an}和{bn}分別是公差為d1,d2的等差數(shù)列,當(dāng)d1,d2滿足什么條件時(shí),{anbn}也為等差數(shù)列?
(2)如果{bn}為等差數(shù)列,且對(duì)一切正整數(shù)n,Sn-Tn=(an-bn)n恒成立,求證:{an}為等差數(shù)列;
(3)如果{an}為等差數(shù)列,且a1=-9,S9=S10;{bn}為等比數(shù)列,且b1=2,T3=14,求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的前n項(xiàng)和,并求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的最大項(xiàng)和最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若不等式logax>(x-1)2恰有2個(gè)整數(shù)解,則實(shí)數(shù)a 的取值范圍為( 。
A.[$\root{9}{4}$,$\root{4}{3}$)B.(1,$\root{9}{4}$]C.[$\root{9}{4}$,$\root{7}{3}$]D.(1,$\root{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x+$\frac{{a}^{2}}{x}$-3.g(x)=x+lnx.其中a>0,F(xiàn)(x)=f(x)+g(x)
(1)若x=$\frac{1}{2}$是函數(shù)y=F(x)的極值點(diǎn),求實(shí)數(shù)a的值
(2)若函數(shù)y=f(x)在區(qū)間[1,2]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=-4x3+x2+4x-1,g(x)=ax-a,a∈R.
(1)求函數(shù)f(x)的極大值、極小值;
(2)若在(-∞,1)內(nèi)存在唯一的整數(shù)m,使得f(m)<g(m)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)的定義域?yàn)镽,其導(dǎo)函數(shù)f′(x)的圖象如圖,則f(x)的極值點(diǎn)有( 。
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+ln(x-a)a∈R.
(Ⅰ)若f(x)有兩個(gè)不同的極值點(diǎn),求a的取值范圍;
(Ⅱ)當(dāng)a≤-2時(shí),用g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,長(zhǎng)方體ABCD-A′B′C′D′中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA′=2,
(1)求異面直線BC′和AD所成的角;
 (2)求證:直線BC′∥平面ADD′A′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1+2i}{1-i}$,則復(fù)數(shù)z的虛部是$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案