13.四個命題:
①?x∈R,x2-3x+2>0恒成立;
②?x∈Q,x2=2;
③?x∈R,x2-1=0;
④?x∈R,4x2>2x-1+3x2
其中真命題的個數(shù)為1.

分析 ①,x2-3x+2>0⇒x>2或x<1,;
②,x2=2⇒x=±$\sqrt{2}$,;
③,x=1時,x2-1=0,;
④,x=1時,4x2=2x-1+3x2,.

解答 解:對于①,x2-3x+2>0⇒x>2或x<1,故錯;
對于②,x2=2⇒x=±$\sqrt{2}$,故錯;
對于③,x=1時,x2-1=0,故正確;
對于④,x=1時,4x2=2x-1+3x2,故錯.
故答案為:1

點評 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中點,BE與AC交于點F,GF⊥平面ABCD.
(Ⅰ)求證:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=f'(1)x3-2x2+3,則f'(2)的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知F1、F2是橢圓C的左、右焦點,點P在橢圓上,且滿足|PF1|=2|PF2|,∠PF1F2=30°,則橢圓的離心率$\frac{2\sqrt{3}-3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,上頂點為B,直線l:y=$\frac{1}{2}$x與橢圓E交于C,D兩點,且△BCD的面積為$\sqrt{2}$.
(1)求橢圓E的標準方程;
(2)設(shè)點P是橢圓E上一點,過點P引直線m,其傾斜角與直線l的傾斜角互補.若直線m與橢圓E相交,另一交點為Q,且直線m與x,y軸分別交于點M,N,求證:QM2+QN2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.數(shù)列{an}各項均為正數(shù),a1=$\frac{1}{2}$,且對任意的n∈N*,都有an+1=an+λan2(λ>0).
(1)取λ=$\frac{1}{{{a_{n+1}}}}$,求證:數(shù)列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若λ=$\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,試求出n的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}前n項和為Sn,已知(1-a10075-2017(a1007-1)=1,(1-a10115-2017(a1011-1)=-1,則( 。
A.S2017=2017,a1007>a1011B.S2017=-2017,a1007>a1011
C.S2017=2017,a1007<a1011D.S2017=-2017,a1007<a1011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,底面ABCD為菱形,G為PC中點,E、F分別為AB、PB上一點,△BCE的面積為6$\sqrt{3},AB=4AE=4\sqrt{2},AC=4\sqrt{6}$,PB=4PF.
(1)求證:AC⊥DF;
(2)求證:EF∥平面BDG;
(3)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀如圖所示程序框圖.若輸入的x=3,則輸出的y的值為(  )
A.40B.30C.25D.24

查看答案和解析>>

同步練習(xí)冊答案