1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-2x,x≤0\\{log_2}(x+1),x>0\end{array}$,則f(f(-1))=1.

分析 由已知得f(-1)=1,由此能求出f(f(-1))的值.

解答 解:∵f(x)=$\left\{\begin{array}{l}-{x^2}-2x,x≤0\\{log_2}(x+1),x>0\end{array}$,
∴f(-1)=-(-1)2-2(-1)=1,
∴f(f(-1))=f(1)=log22=1.
故答案為:1.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題“?x0∈R,sinx0+2x02>cosx0”的否定為?x∈R,sinx+2x2≤cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)z滿足($\overline{z}$+i)(1+i)=2,則z在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將圓x2+y2=1上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)以坐標(biāo)原點為極點,x軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}}$)=2$\sqrt{2}$,若P,Q分別為曲線C和直線l上的一點,求P,Q的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在三角形ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S=$\frac{{\sqrt{3}}}{2}$accosB.
(1)求角B的大;
(2)已知a2+c2=4ac,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若f(x)滿足對任意的實數(shù)a,b都有f(a+b)=f(a)•f(b)且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2016)}{f(2015)}$=( 。
A.1 007B.1 008C.2 015D.2 016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對于x∈R恒成立,則( 。
A.f(1)<ef(0),f(2 014)>e2014f(0)B.f(1)>ef(0),f(2 014)>e2014f(0)
C.f(1)>ef(0),f(2 014)<e2014f(0)D.f(1)<ef(0),f(2 014)<e2014f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$\frac{sinα-cosα}{sinα+cosα}$=$\frac{1}{2}$,則tan2α的值為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.-$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是一個幾何體的側(cè)視圖和俯視圖,已知俯視圖中的兩個而矩形是全等的,且該幾何體的正視圖是一個正方形,則該幾何體的表面積為4$+4\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案