已知函數(shù)f(x)=
1
2
+ln
x
1-x

(Ⅰ)求證:存在定點M,使得函數(shù)f(x)圖象上任意一點P關(guān)于M點對稱的點Q也在函數(shù)f(x)的圖象上,并求出點M的坐標(biāo);
(Ⅱ)定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2012;
(Ⅲ)對于(Ⅱ)中的Sn,求證:對于任意n∈N*都有lnSn+2-lnSn+1
1
n2
-
1
n3
分析:(Ⅰ)存在定點M,使得函數(shù)f(x)圖象上任意一點P關(guān)于M點對稱的點Q也在函數(shù)f(x)的圖象上,則函數(shù)f(x)上的點P和點Q關(guān)于點M對稱,可根據(jù)f(x)+f(2a-x)=2b可以求出a和b的值,進(jìn)而可以證明;
(Ⅱ)由(Ⅰ)根據(jù)對稱性,可得f(x)+f(1-x)=1,從而可求出Sn的表達(dá)式,進(jìn)而將n=2012代入,即可求出S2012的值;
(Ⅲ)根據(jù)(Ⅱ)中求得的Sn的表達(dá)式先求出lnSn+2-lnSn+1=ln
Sn+2
Sn+1
=ln(1+
1
n
)
,從而可證明結(jié)論.
解答:解:(Ⅰ)函數(shù)定義域為(0,1).
設(shè)點M的坐標(biāo)為(a,b),則若點M,使得函數(shù)f(x)圖象上任意一點P關(guān)于M點對稱的點Q也在函數(shù)f(x)的圖象上
必有f(x)+f(2a-x)=
1
2
+ln
x
1-x
1
2
+ln
2a-x
1-2a+x
=1+ln
-x2+2ax
-x2+2ax+1-2a
=2b,對于x∈(0,1)恒成立,
∴1-2a=0,1=2b.,
∴a=b=
1
2

所以存在定點M(
1
2
1
2
),使得函數(shù)f(x)的圖象上任意一點P關(guān)于M點對稱的點Q也在函數(shù)f(x)的圖象上.
(Ⅱ)由(Ⅰ)得f(x)+f(1-x)=1,
Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)
…①
Sn=f(1-
1
n
)+f(1-
2
n
)+…+f(
2
n
)+f(
1
n
)
…②
①+②,得2Sn=n-1,
Sn=
n-1
2
(n≥2,n∈N*)
,
故S2012=1005.5.
(Ⅲ)當(dāng)n∈N*時,由(Ⅱ)知lnSn+2-lnSn+1=ln
Sn+2
Sn+1
=ln(1+
1
n
)

于是lnSn+2-lnSn+1
1
n2
-
1
n3
等價于ln(1+
1
n
)>
1
n2
-
1
n3
.…(10分)
令g(x)=x3-x2+ln(1+x),則g′(x)=
3x3+(x-1)2
x+1

∴當(dāng)x∈[0,+∞)時,g'(x)>0,即函數(shù)g(x)在[0,+∞)上單調(diào)遞增,又g(0)=0.
于是,當(dāng)x∈(0,+∞)時,恒有g(shù)(x)>g(0)=0,即x3-x2+ln(1+x)>0恒成立.…(12分)
故當(dāng)x∈(0,+∞)時,有l(wèi)n(1+x)>x2-x3成立,
x=
1
n
∈(0,+∞)
,則有ln(
1
n
+1)>
1
n2
-
1
n3
成立.…(14分)
點評:本題重點考查函數(shù)的對稱性,考查函數(shù)與數(shù)列的綜合,考查了學(xué)生的計算能力和對數(shù)列的綜合掌握,解題時注意整體思想和轉(zhuǎn)化思想的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案