12.已知函數(shù)f(x),對任意的實數(shù)x滿足f(x-2)=f(x+2),且當x∈[-1,3)時,f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x≤1)}\\{-|x-2|(1<x<3)}\end{array}\right.$,若直線y=kx與函數(shù)f(x)的圖象有5個公共點,則實數(shù)k的取值范圍是(-$\frac{\sqrt{15}}{15}$,-$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$).

分析 可判斷函數(shù)f(x)的周期為4,從而作出函數(shù)f(x)與直線y=kx的圖象,利用數(shù)形結(jié)合求解.

解答 解:∵對任意的實數(shù)x滿足f(x-2)=f(x+2),
∴函數(shù)f(x)的周期為4,
作函數(shù)f(x)與直線y=kx的圖象如下,

結(jié)合圖象可知,
kl=-$\frac{1}{\sqrt{{4}^{2}-1}}$=-$\frac{\sqrt{15}}{15}$,km=-$\frac{1}{5}$,kn=$\frac{1}{\sqrt{{4}^{2}-1}}$=$\frac{\sqrt{15}}{15}$,kq=$\frac{1}{5}$,
故實數(shù)k的取值范圍是
(-$\frac{\sqrt{15}}{15}$,-$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$);
故答案為:(-$\frac{\sqrt{15}}{15}$,-$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$).

點評 本題考查了函數(shù)的性質(zhì)的判斷與應用,同時考查了學生的作圖能力及數(shù)形結(jié)合的思想應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{CB}$-$\overrightarrow{BA}$=3$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關系t=$\left\{\begin{array}{l}{64,x≤0}\\{{2}^{kx+6},x>0}\end{array}\right.$且該食品在4℃的保鮮時間是16小時.已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示,給出以下四個結(jié)論:
①該食品在6℃的保鮮時間是8小時;
②當x∈[-6,6]時,該食品的保鮮時間t隨看x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內(nèi);
④到了此日14時,甲所購買的食品已然過了保鮮時間
其中,所有正確結(jié)論的序號是①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設a≠0,函數(shù)f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}-ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,則f(a)=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.用列舉法表示A={x|-4<x<2,x∈Z}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設條件p:2x2-3x+1>0,條件q:$\frac{1}{x}$<1,則¬p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若${∫}_{0}^{k}$e3xdx=$\frac{1}{3}$,則正數(shù)k=$\frac{1}{3}$ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.等比數(shù)列{an}中,如果a3•a4•a6•a7=81,則a1•a9的值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$U=\{y|y={2^x},x≥-1\},A=\{x|\frac{1}{x-1}≥1\}$,則∁UA=(  )
A.$[\frac{1}{2},2]$B.[2,+∞)C.$[\frac{1}{2},1]∪(2,+∞)$D.$[\frac{1}{2},2)∪(2,+∞)$

查看答案和解析>>

同步練習冊答案