A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 由題意可知,an+1-1=an(an-1)從而得到$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1}=\frac{1}{{a}_{n}}$,通過累加得:m=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{2016}$=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2017}-1}$=2-$\frac{1}{{a}_{2017}-1}$,an+1-an=$({a}_{n}-1)^{2}$≥0,an+1≥an,可得:a2017≥a2016≥a3≥2,$0<\frac{1}{{a}_{2017}}<1$,1<m<2,故可求得m的整數部分.
解答 解:由題意可知,an+1-1=an(an-1),
$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1}=\frac{1}{{a}_{n}}$,
∴m=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{2016}$=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2017}-1}$═2-$\frac{1}{{a}_{2017}-1}$,
an+1-an=$({a}_{n}-1)^{2}$≥0,an+1≥an,
∴a2017≥a2016≥a3≥2,
$0<\frac{1}{{a}_{2017}}<1$,
1<m<2,故可求得m的整數部分1.
故答案選:B.
點評 本題考查數列的性質和應用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地運用數列的遞推式.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{6}{5}$ | B. | -1 | C. | 0 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com