已知m、a、n成等差數(shù)列,m、b、c、n成等比數(shù)列,其中m,n∈R+,求證:2a≥b+c.
考點:等差數(shù)列的性質(zhì),等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等比數(shù)列的公比q,由等差數(shù)列和等比數(shù)列的性質(zhì)把m,n,a,b,c都用q表示,結(jié)合基本不等式證明結(jié)論.
解答: 證明:∵m、a、n成等差數(shù)列,∴2a=m+n,
∵m、b、c、n成等比數(shù)列,∴mn=bc,
設(shè)等比數(shù)列的公比為q,則
b
m
=q
,m+n=
b
q
+cq=
b
q
+bq2

當(dāng)q=1時,2a=m+n=b+c;
當(dāng)q≠1時,
2a
b+c
=
b
q
+bq2
b+bq
=
1
q
+q2
1+q
=
1+q3
q+q2
=
1-q+q2
q
2q-q
q
=1

∴2a>b+c.
綜上,2a≥b+c.
點評:本題考查了等差數(shù)列和等比數(shù)列的性質(zhì),考查了數(shù)列不等式,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,a,b∈R+,m=f(
a+b
2
),n=f(
ab
),p=f(
2ab
a+b
),則m,n,p的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x+a|-
1
2
lnx.求函數(shù)f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|sinα|=
(
1
cos2α
-1)(1-sin2α)
,這種說法
 
.(填“正確”或“錯誤”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(
2
1-i
2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等差數(shù)列,若a3,a7+7,a11+14構(gòu)成公比為q的等比數(shù)列,則q=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若2a6=6+a7,則S9的值是( 。
A、18B、36C、54D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)實數(shù)a,b變化時,直線(2a+b)x+(a+b)y+(a-b)=0與直線m2x+2y-n2=0過同一個定點,記點(m,n)的軌跡為曲線C,P為曲線C上任意一點,若點Q(1,0),則PQ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log2(2x+m),則滿足函數(shù)f(x)的定義域和值域都是實數(shù)R的實數(shù)m構(gòu)成的集合為( 。
A、{m|m=0}
B、{m|m≤0}
C、{m|m≥0}
D、{m|m=1}

查看答案和解析>>

同步練習(xí)冊答案