17.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左右焦點(diǎn)分別為F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2,是以PF1為底邊的等腰直角三角形,若橢圓與雙曲線的離心率分別為e1、e2,則e1•e2的值是( 。
A.$\frac{1}{2}$B.1C.2D.3

分析 涉及到圓錐曲線的焦點(diǎn)和曲線上的點(diǎn),要求離心率,優(yōu)先考慮定義.

解答 由題意得,PF2=F1F2=2c,$P{F}_{1}=\sqrt{4{c}^{2}+4{c}^{2}}=2\sqrt{2}c$,所以根據(jù)圓錐曲線離心率的定義得${e}_{1}=\frac{2c}{2\sqrt{2}c+2c}$,${e}_{2}=\frac{2c}{2\sqrt{2}c-2c}$,所以e1•e2=1.

點(diǎn)評 本題充分考查了圓錐曲線的定義,利用圓錐曲線離心率的定義來計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的個(gè)數(shù)是( 。
(1)命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為:“若方程x2+x-m=0無實(shí)根,則m≤0”
(2)對于命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”
(3)“x≠1”是“x2-3x+2≠0”的充分不必要條件
(4)若p∧q為假命題,則p,q均為假命題.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,四棱錐P-ABCD的底面是邊長為a的菱形,∠DAB=60°,側(cè)面PAD⊥底面ABCD,PA=PD.
(1)證明:AD⊥PB;
(2)若PB=$\frac{\sqrt{5}}{2}$a,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=x+asinx.
(1)若a=1.求f(x)在區(qū)間[0,1]上的最大值;
(2)若f(x)在(-∞,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列1,4,7,10,…則19是它的( 。
A.第6項(xiàng)B.第7項(xiàng)C.第8項(xiàng)D.第9項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等差數(shù)列,a4=9,d=-2,則S4=48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,a8=11,d=3,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈Z)的圖象關(guān)于y軸對稱,且在(-∞,0)為增函數(shù).
(1)求f(x)的解析式;
(2)判斷g(x)=a$\sqrt{f(x)}$-$\frac{xf(x)}$的奇偶性;解不等式f(2x-1)<f(1+x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列,則此數(shù)列的公差d=1.

查看答案和解析>>

同步練習(xí)冊答案