已知f(x)的定義域?yàn)?0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當(dāng)x2>x1>0時(shí),f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.
(1)0,2,3(2)(2,4].
解析試題分析:解:(1)f(1)=f(1)+f(1),∴f(1)=0,
f(4)=f(2)+f(2)=1+1=2,
f(8)=f(2)+f(4)=2+1=3. 6
(2)∵f(x)+f(x-2)≤3,∴f[x(x-2)]≤f(8),
又∵對(duì)于函數(shù)f(x)有x2>x1>0時(shí)f(x2)>f(x1),
∴f(x)在(0,+∞)上為增函數(shù). 10
∴⇒2<x≤4.
∴x的取值范圍為(2,4]. 14
考點(diǎn):抽象函數(shù)
點(diǎn)評(píng):主要是考查了賦值法來(lái)求解函數(shù)的值,以及單調(diào)性的判定,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) .
(1)若,求的單調(diào)區(qū)間及的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù).
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)( )
(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程恰有兩個(gè)不相等實(shí)根的概率;
(2)若從區(qū)間中任取一個(gè)數(shù),從區(qū)間中任取一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com