【題目】已知橢圓()的離心率為,連接橢圓四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)是橢圓的右頂點,過點作兩條互相垂直的直線,分別與橢圓交于,兩點,求證:直線過定點;
(3)(只理科做)過點作兩條互相垂直的直線,,與圓:交于,兩點,交橢圓于另一點,求面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)求這5天的平均發(fā)芽率;
(2)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,,用的形式列出所有的基本事件,并求滿足的事件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟些?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的棱長為,點分別棱樓的中點,下列結(jié)論中正確的是( )
A.四面體的體積等于B.平面
C.平面D.異面直線與所成角的正切值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復發(fā)的情況進行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認為甲乙兩套治療方案對患者白血病復發(fā)有影響;
復發(fā) | 未復發(fā) | 總計 | |
甲方案 | |||
乙方案 | 2 | ||
總計 | 70 |
(2)為改進“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機抽取2名患者恰好是復發(fā)患者和未復發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)F是橢圓C:(a>b>0)的一個焦點,P是橢圓C上的點,圓x2+y2=與線段PF交于A,B兩點,若A,B三等分線段PF,則橢圓C的離心率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,,為的中點.
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查。
(I)求應從小學、中學、大學中分別抽取的學校數(shù)目。
(II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學校均為小學的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com