【題目】等差數(shù)列{an}中,Sn為其前n項和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對任意n∈N+滿足bn+1=2bn+1.
(1)數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn= ,設(shè)數(shù)列{cn}的前n項和Tn , 證明:Tn<2.
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,由a2=2,S5=15,得 ,解得a1=d=1,
∴an=1+(n﹣1)=n.
∵對任意n∈N+滿足bn+1=2bn+1.∴bn+1+1=2(bn+1),
∴數(shù)列{bn+1}為等比數(shù)列,公比為2.
∴ ,∴ .
(2)證明:cn= = ,
則數(shù)列{cn}的前n項和 ,
∴ ,
兩式相減得, = +…+ ﹣ = ﹣ ,
∴
【解析】(1)設(shè)等差數(shù)列{an}的公差為d,由a2=2,S5=15,得 ,解得a1 , d即可得出an . 對任意n∈N+滿足bn+1=2bn+1.變形為bn+1+1=2(bn+1),利用等比數(shù)列的通項公式即可得出bn . (2)cn= = ,利用“錯位相減法”、等比數(shù)列的求和公式即可得出.
【考點精析】關(guān)于本題考查的數(shù)列的前n項和和數(shù)列的通項公式,需要了解數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)在5秒內(nèi)的任何時刻,兩條不相關(guān)的短信機(jī)會均等地進(jìn)入同一部手機(jī),若這兩條短信進(jìn)入手機(jī)的時間之差小于2秒,手機(jī)就會受到干擾,則手機(jī)受到干擾的概率為_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時,f(x)=( )1﹣x , 則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當(dāng)x∈(3,4)時,f(x)=( )x﹣3 .
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個總體中的100個個體的編號分別為0,1,2,3,…,99,依次將其分成10個小段,段號分別為0,1,2,…,9.現(xiàn)要用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,規(guī)定如果在第0段隨機(jī)抽取的號碼為i,那么依次錯位地取出后面各段的號碼,即第k段中所抽取的號碼的個位數(shù)為i+k或i+k-10(i+k≥10),則當(dāng)i=7時,所抽取的第6個號碼是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個向量 =(λ+2,λ2﹣cos2α)和 =(m, +sinα),其中λ,m,α為實數(shù).若 =2 ,則 的取值范圍是( )
A.[﹣1,6]
B.[﹣6,1]
C.(﹣∞, ]
D.[4,8]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的四棱錐S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一個動點.
(1)證明:DE和SC不可能垂直;
(2)當(dāng)點E為線段BS的三等分點(靠近B)時,求二面角S﹣CD﹣E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com