【題目】已知為圓上一動點,圓心關(guān)于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標(biāo)原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

【答案】(1)(2)

【解析】分析:(1)利用橢圓定義求出點的軌跡方程;(2)由直線與橢圓相切可知,點的坐標(biāo)為,設(shè)直線垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,利用均值不等式求最值,從而得到面積的取值范圍.

詳解:(1)因為,所以的中點,因為,所以,所以點的垂直平分線上,所以

因為,所以點在以為焦點的橢圓上,

因為,所以,

所以點的軌跡方程為.

(2)由得,,

因為直線與橢圓相切于點

所以,即

解得,

即點的坐標(biāo)為,

因為點在第二象限,所以

所以,

所以點的坐標(biāo)為,

設(shè)直線垂直交于點,則是點到直線的距離,

設(shè)直線的方程為,

,

當(dāng)且僅當(dāng),即時,

有最大值,

所以

面積的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】使用支付寶和微信支付已經(jīng)成為廣大消費者最主要的消費支付方式,某超市通過統(tǒng)計發(fā)現(xiàn)一周內(nèi)超市每天的凈利潤(萬元)與每天使用支付寶和微信支付的人數(shù)(千人)具有線性相關(guān)關(guān)系,并得到最近一周的7組數(shù)據(jù)如下表,并依此作為決策依據(jù).

(1)作出散點圖,并求出回歸方程(,精確到);

(2)超市為了刺激周一消費,擬在周一開展使用支付寶和微信支付隨機抽獎活動,總獎金7萬元.根據(jù)市場調(diào)查,抽獎活動能使使用支付寶和微信支付消費人數(shù)增加7千人,試決策超市是否有必要開

展抽獎活動?

(3)超市管理層決定:從周一到周日,若第二天的凈利潤比前一天增長超過兩成,則對全體員工進行獎勵,在(Ⅱ)的決策下,求全體員工連續(xù)兩天獲得獎勵的概率.

參考數(shù)據(jù): ,,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知命題:實數(shù)滿足,命題:實數(shù)滿足方程表示的焦點在軸上的橢圓,且的充分不必要條件,求實數(shù)的取值范圍;

(2)設(shè)命題:關(guān)于的不等式的解集是:函數(shù)的定義域為.若是真命題,是假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)的發(fā)展推動著科技的進步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為,不考慮其它因素的影響.

(1)用表示,并求實數(shù)使是等比數(shù)列;

(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>b>c>d>0,ad=bc.
(Ⅰ)證明:a+d>b+c;
(Ⅱ)比較aabbcddc與abbaccdd的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程序框圖如圖,當(dāng)輸入x為2016時,輸出的y的值為(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三次函數(shù)過點,且函數(shù)在點處的切線恰好是直線.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ) 設(shè)函數(shù),若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案