已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,過點P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點.

(1)求橢圓C的方程;

(2)求的取值范圍;

(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

 

【答案】

(1);(2);(3)證明過程詳見解析.

【解析】

試題分析:本題考查橢圓的標準方程和幾何性質(zhì)、直線方程等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運算求解能力、綜合分析和解決問題的能力.第一問,利用離心率及解出得到橢圓的標準方程;第二問,先設(shè)出直線的方程,因為直線與橢圓相交,消參得關(guān)于的方程,因為相交于2個交點,所以得到的取值范圍,設(shè)出點坐標,則求出兩根之和、兩根之積及,所以,將上述的條件代入,得到的表達式,求最值;第三問,先通過對稱,得到點的坐標,列出直線的方程,令,得的值正好得1,所以得證.

試題解析:(1)解:由題意知,∴,即,

,∴,

故橢圓的方程為 .    2分

(2)解:由題意知直線的斜率存在,設(shè)直線的方程為

得:   ,      4分

得:,

設(shè)A(x1,y1),B (x2,y2),則  ①

,

,∴,∴,

的取值范圍是.

(3)∵兩點關(guān)于軸對稱,∴,

直線的方程為,令得:

,∴,

由將①代入得:,∴直線軸交于定點.

考點:1.橢圓的標準方程;2.橢圓的離心率;3.直線與橢圓的位置關(guān)系;4.兩根之和、兩根之積.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案