【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)判斷直線與曲線的位置關(guān)系,并說明理由;

2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.

【答案】(1)直線與曲線相交;(2.

【解析】試題分析:(1)由

,又直線過點(diǎn),且該點(diǎn)到圓心的距離為直線 與曲線相交;(2)先當(dāng)驗(yàn)證直線的斜率不存在時(shí),直線過不成立直線 必有斜率, 設(shè)其方程為

圓心到直線的距離

的斜率為

試題解析:(1)因?yàn)?/span>,所以,所以曲線的直角坐標(biāo)方程為

,,因?yàn)橹本過點(diǎn),且該點(diǎn)到圓心的距離為,所以直線與曲線相交.

2)當(dāng)直線的斜率不存在時(shí),直線過圓心,則直線必有斜率, 設(shè)其方程為

,,圓心到直線的距離,

解得,所以直線的斜率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點(diǎn),若這n條直線把平面分成f(n)個(gè)平面區(qū)域,則f(3)=;f(n)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分別是(
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的東偏南方向的海面P處,且,并以的速度向西偏北方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為,并以的速度不斷增大,問幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當(dāng)平面與平面垂直時(shí),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 ,點(diǎn)Q是邊AB上一點(diǎn),且 =0.
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在的平面與正方形所在的平面相互垂直,點(diǎn)的中點(diǎn).

I)求證: 平面

II)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)>0時(shí),求函數(shù)的極值點(diǎn);

(2)證明:當(dāng)時(shí), 對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點(diǎn)M、N.

(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?
(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說明)

查看答案和解析>>

同步練習(xí)冊(cè)答案